Several Optimal Bounds for Some Means Derived From the Lemniscatic Mean

Xueling Wang and Li Yin*

College of Science, Binzhou University, Binzhou 256603, China.

Received April 13, 2021; Accepted August 7, 2021; Published online January 28, 2022.

Abstract. In this paper, we present sharp bounds for some bivariate means derived from the lemniscatic mean by Neuman, in terms of the harmonic, arithmetic and contraharmonic means.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07

Key words: Lemniscate mean; bivariate means; bound; inequalities.

1 Introduction

For a,b>0 with $a \neq b$, the lemniscate mean LM (see [3, (2.7)] and [2, P. 259]) is defined as follows:

$$LM(a,b) = \begin{cases} \frac{\sqrt{a^2 - b^2}}{\left(\arcsin\sqrt[4]{1 - \frac{b^2}{a^2}}\right)^2}, & a > b, \\ \frac{\sqrt{b^2 - a^2}}{\left(\arcsin\sqrt[4]{\frac{b^2}{a^2} - 1}\right)^2}, & a < b, \\ a, & a = b, \end{cases}$$
(1.1)

where

$$\arcsin x = \int_0^x \frac{dt}{\sqrt{1 - t^4}}, \quad |x| \le 1$$
 (1.2)

and

$$\operatorname{arcslh} x = \int_0^x \frac{dt}{\sqrt{1+t^4}}, \quad x \in \mathbb{R}$$
 (1.3)

^{*}Corresponding author. Email addresses: math_2021@163.com (Wang X), yinli_79@163.com (Yin L)

are Gauss arc lemniscate sine and the hyperbolic arc lemniscate sine functions respectively (see [23, Ch.1]). Following Neuman [19, Proposition 3.1], another pair of the arc lemniscate functions, Gauss arc lemniscate tangent function and the hyperbolic arc lemniscate tangent function arctlh are defined by

$$\operatorname{arctl} x = \operatorname{arcsl} \left(\frac{x}{\sqrt[4]{1+x^4}} \right), \quad x \in \mathbb{R},$$
 (1.4)

and

$$\operatorname{arctlh} x = \operatorname{arcslh} \left(\frac{x}{\sqrt[4]{1-x^4}} \right), \quad |x| < 1,$$
 (1.5)

respectively.

The limiting values of the above four functions are (see [21, 19.20.2], [20])

$$\omega = \operatorname{arcsl1} = \frac{\Gamma^{2}(\frac{1}{4})}{4\sqrt{2\pi}} = 1.31103\cdots,$$

$$\kappa = \operatorname{arcslh}(+\infty) = \sqrt{2}\omega = 1.85407\cdots,$$

$$\sigma = \operatorname{arcslh1} = \frac{\omega}{\sqrt{2}} = 0.92703\cdots,$$

$$\tau = \operatorname{arctl1} = \operatorname{arcsl}\left(\frac{1}{\sqrt[4]{2}}\right) = 0.89558\cdots$$
(1.6)

where $\Gamma(x)$ is the classical Euler gamma function.

For more information on the arc lemniscate functions, the reader may see references [1,4,5,8,13,18,24–26].

Let

$$G = \sqrt{ab}, \quad A = \frac{a+b}{2}, \quad Q = \sqrt{\frac{a^2 + b^2}{2}},$$
 (1.7)

be the geometric, arithmetic, and quadratic means of two distinct positive real numbers a and b, respectively. The means derived from the lemniscatic mean are defined by Neuman as follows [19, (6.4)]:

$$LM_{GA} = LM_{GA}(a,b) = LM(G,A),$$

$$LM_{AG} = LM_{AG}(a,b) = LM(A,G),$$

$$LM_{AQ} = LM_{AQ}(a,b) = LM(A,Q),$$

$$LM_{QA} = LM_{QA}(a,b) = LM(Q,A).$$
(1.8)

Other means used in this paper are the harmonic mean *H* and the contraharmonic mean *C* which are defined as follows

$$H = \frac{2ab}{a+b}, \quad C = \frac{a^2 + b^2}{a+b}.$$
 (1.9)