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Abstract

Flexible GMRES (FGMRES) is a variant of preconditioned GMRES, which changes

preconditioners at every Arnoldi step. GMRES often has to be restarted in order to save

storage and reduce orthogonalization cost in the Arnoldi process. Like restarted GMRES,

FGMRES may also have to be restarted for the same reason. A major disadvantage

of restarting is the loss of convergence speed. In this paper, we present a heavy ball

flexible GMRES method, aiming to recoup some of the loss in convergence speed in the

restarted flexible GMRES while keep the benefit of limiting memory usage and controlling

orthogonalization cost. Numerical tests often demonstrate superior performance of the

proposed heavy ball FGMRES to the restarted FGMRES.
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1. Introduction

The Generalized Minimal Residual (GMRES) method [12] is a well-established Krylov sub-

space method for solving a large and sparse nonsymmetric linear system of equations

Ax = b, (1.1)

where A ∈ C
n×n, b ∈ C

n, and x ∈ C
n is the unknown. Given an initial approximation x0, the

k-th GMRES approximation xk is sought so that the k-th residual rk = b−Axk satisfies

‖rk‖2 = min
z∈Kk(A,r0)

‖b−A(x0 + z)‖2, (1.2)

where r0 = b−Ax0, ‖ · ‖2 is the Euclidian norm, and Kk(A, r0) is the k-th Krylov subspace of

A on r0 defined by

Kk(A, r0) = span
{

r0, Ar0, A
2r0, · · · , A

k−1r0
}

. (1.3)

Algorithmically, GMRES first builds an orthonormal basis of Kk(A, r0) via the Arnoldi process

and, along the way, A is projected onto the Krylov subspace to turn (1.2) into a much smaller

(k + 1)× k least squares problem.
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Ideally, it is hoped that for a modest k relative to n, ‖rk‖2 is sufficient tiny so that xk can

be regarded as a sufficiently accurate approximation to the exact solution of (1.1). But that

is not always the case. When that happens, GMRES can become very expensive because of

the heavy burden in memory for storing orthonormal basis vectors and for generating them

in the Arnoldi process. A popular and the simplest remedy is the so-called restarted GMRES

(REGMRES) [6] which sets an upper bound kmax on k and starts over as soon as k reaches the

upper bound kmax but ‖rkmax‖2 is not yet tiny enough, using the latest approximation xkmax as

the initial guess for the next GMRES run. Doing so effectively put the memory requirement and

orthogonalization cost under control, but not without tradeoff, which is slow convergence and

potentially increases overall computational time in solving (1.1). In recognizing this tradeoff,

researchers have made efforts address the issue.

The loss in convergence speed by REGMRES is due to its control on the largest possible

number of Arnoldi steps that one GMRES run can use. Besides the use of the latest approxi-

mation as the initial guess for the next GMRES run, REGMRES completely throws away the

Krylov subspaces built thus far. To partially compensate the throw-away, two main types of im-

provements are discussed, which include hybrid iterative methods and acceleration techniques.

Our discussion mainly focuses on acceleration techniques. One natural idea to accelerate GM-

RES is to augment the Krylov subspace of REGMRES according to spectral information at the

restart, named augmented Krylov subspace techniques, such as GMRES-E [8] , GMRES-IR [9]

and GMRES-DR [10]. This kind of methods keeps the form of Krylov subspace. Another tech-

nique is to approximate the search space with non-Krylov subspace, i.e., approximation space.

In [1], Baker, Jessup and Manteuffel presented the Loose GMRES (LGMRES) method. At the

ℓ-th restart of LGMRES, the Krylov subspace Kk(A, r
(ℓ)
0 ) is generated and augmented with the

t most recent error vectors, which are defined to be the differences between every two sequential

solutions.

In [7], from the optimization perspective, Imakura, Li and Zhang proposed two comparable

methods, the locally optimal GMRES (LOGMRES) and the heavy ball GMRES methods (H-

BGMRES). LOGMRES augments the search space by adding the most previous solution vector.

The latter one incorporates the idea in the heavy ball method from optimization [11, p.65] into

REGMRES by adding a new vector – the difference of approximations from the previous two

cycles of HBGMRES, i.e., the most previous error vector in LGMRES, to the next searching

space. Numerical experiments show that HBGMRES often converges significantly faster than

REGRMES. However, there are cases where the gain of HBGMRES over REGMRES is not so

significant.

The preconditioning technique is often very effective in enhancing the performance and

reliability of Krylov subspace methods, provided a reasonably good preconditioner can be found.

Instead of (1.1), its right preconditioned linear system takes the form

(AM−1)y = b, Mx = y. (1.4)

The matrix M is called a preconditioner and it may exist in form in such a way that linear

system Mz = c is cheap to solve. However, it is usually hard to find a suitable preconditionerM

for the problem at hand. Saad [13] proposed an inner-outer iteration method called the flexible

GMRES method (FGMRES), in which GMRES is used as the outer iteration. In the inner

iteration some linear system Az = c is approximately solved and thus each inner iteration can

be viewed as applying some preconditioner M , not known explicitly but implicitly in the action

M−1c ≈ A−1c. GMRESR [15], another similar inner-outer iteration, uses GCR [3] instead


