Regularity for 3-D MHD Equations in Lorentz Space $L^{3,\infty}$

Xiangao Liu*, Yueli Liu and Zixuan Liu

School of Mathematic Sciences, Fudan University, Shanghai, China.

Received 7 November 2021; Accepted 3 December 2021

Abstract. The regularity for 3-D MHD equations is considered in this paper, it is proved that the solutions (v,B,p) are Hölder continuous if the velocity field $v \in L^{\infty}(0,T;L_x^{3,\infty}(\mathbb{R}^3))$ with local small condition

$$r^{-3}\left|\left\{x\in B_r(x_0):|v(x,t_0)|>\varepsilon r^{-1}\right\}\right|\leq\varepsilon$$

and the magnetic field $B \in L^{\infty}(0,T;VMO^{-1}(\mathbb{R}^3))$.

AMS subject classifications: 35Q35, 76B03, 76D03

Key words: Lorentz space, backward uniqueness, MHD equations.

1 Introduction

In this paper, we will consider the following MHD equations in $\mathbb{R}^3 \times (0, T)$:

$$\begin{cases} \partial_t v + v \cdot \nabla v - \Delta v + \nabla p = B \cdot \nabla B, \\ \partial_t B - \Delta B + v \cdot \nabla B - B \cdot \nabla v = 0, \\ \operatorname{div} v = 0, \quad \operatorname{div} B = 0, \end{cases}$$
(1.1)

where *v* is the fluid velocity field and *B* is the magnetic field. The function *p* describes the scalar pressure. The MHD equations (1.1) reduce to the incompressible Navier-Stokes equations when there is no electromagnetic field, that is, $B \equiv 0$.

^{*}Corresponding author. *Email addresses:* liuyuel04@126.com (Y. Liu), 16110180007@fudan.edu.cn (Z. Liu), xgliu@fudan.edu.cn (X. Liu)

There is a very rich literatures dedicated to the mathematical study of the Navier-Stokes system by many researchers; see, for example, [1,3–5,8–10,13–15,18,20,22]. Compared with Navier-Stokes equation, the MHD equation (1.1) is a combination of the incompressible Navier-Stokes equations of fluid dynamics and Maxwell's equations of electromagnetism. Such a system depicts the motion of many conducting impressible immiscible fluids without surface tension under the action of a magnetic field.

For a point $z = (x,t) \in \mathbb{R}^3 \times \mathbb{R}_+$, we denote

$$B_r(x) := \left\{ y \in \mathbb{R}^3 : |y - x| < r \right\}, \quad Q_r(z) := B_r(x) \times (t - r^2, t), \quad Q_r = Q_r(0, 0),$$

and define the space

$$L^{q,p}(Q_r) = L^q\left(t - r^2, t; L^p(B_r(x))\right)$$

with the norm

$$\|u\|_{L^{p,q}(Q_r(z))}^q = \int_{t-r^2}^t \|u(t)\|_{L^p(B_r(x))}^q dt.$$

Let $\Omega \subset \mathbb{R}^3$. The Lorentz space $L^{(p,q)}(\Omega)$ with $p,q \in (0,\infty)$ is the set of measurable functions f on Ω such that the following quasi-norm is bounded:

$$\|f\|_{L^{(p,q)}(\Omega)} := \begin{cases} \left(p \int_0^\infty \alpha^q \left| \left\{ x \in \Omega : |f(x)| > \alpha \right\} \right|^{\frac{q}{p}} \frac{d\alpha}{\alpha} \right)^{\frac{1}{q}}, & \text{if } q < \infty, \\ \sup_{\alpha > 0} \alpha \left| \left\{ x \in \Omega : |f(x)| > \alpha \right\} \right|^{\frac{1}{p}}, & \text{if } q = \infty. \end{cases}$$

Lorentz spaces can be used to capture logarithmic singularities. For example, in \mathbb{R}^3 , for any $\beta > 0$ we have

$$|x|^{-1}\left(\frac{\log|x|}{2}\right)^{-\beta} \in L^{(3,q)}(\mathbb{R}^3), \text{ if and if } q > \frac{1}{\beta}$$

It is known that $L^{(p,p)}(\Omega) = L^p(\Omega)$ and $L^{(p,q_1)}(\Omega) \subset L^{(p,q_2)}(\Omega)$ while $q_1 \leq q_2$. If $|\Omega|$ is finite then $L^{(p,q)}(\Omega) \subset L^r(\Omega)$ for all $0 < q \le \infty$ and 0 < r < p,

$$\|g\|_{L^{r}(\Omega)} \leq |\Omega|^{\frac{1}{r} - \frac{1}{p}} \|g\|_{L^{(p,q)}(\Omega)}.$$
(1.2)

In the classical literatures, Leray [9] and Hopf [8] established the existence weak solution to the Navier Stokes system. However, the smoothness of the Leray-Hopf weak solution is still a challenging open problem. Serrin [18] proved