
INTERNATIONAL JOURNAL OF c© 2023 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 20, Number 2, Pages 176–198 doi: 10.4208/ijnam2023-1008

IMPROVED LONG TIME ACCURACY FOR PROJECTION

METHODS FOR NAVIER-STOKES EQUATIONS USING EMAC

FORMULATION

SEAN INGIMARSON, MONIKA NEDA, LEO G. REBHOLZ, JORGE REYES, AND AN VU

Abstract. We consider a pressure correction temporal discretization for the incompressible

Navier-Stokes equations in EMAC form. We prove stability and error estimates for the case

of mixed finite element spatial discretization, and in particular that the Gronwall constant’s
exponential dependence on the Reynolds number is removed (for sufficiently smooth true solutions)

or at least significantly reduced compared to the commonly used skew-symmetric formulation. We

also show the method preserves momentum and angular momentum, and while it does not preserve
energy it does admit an energy inequality. Several numerical tests show the advantages EMAC

can have over other commonly used formulations of the nonlinearity. Additionally, we discuss

extensions of the results to the usual Crank-Nicolson temporal discretization.
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1. Introduction

It is widely accepted that the Navier-Stokes equations (NSE) determine the
evolution of incompressible, viscous, Newtonian fluid flow. These equations are
given by

ut + u · ∇u+∇p− ν∆u = f,(1)

∇ · u = 0,(2)

where u and p represent velocity and pressure respectively, f is an external force,
and ν represents kinematic viscosity, which is inversely proportional to the Reynolds
number Re. Appropriate boundary and initial conditions are needed to close the
system.

While the NSE are built from conservation of linear momentum and mass conser-
vation, they are also well-known to conserve energy, angular momentum, enstrophy
in 2D, helicity in 3D, among other important physical quantities [10]. By ‘con-
serve’ we refer to the case of no viscous or external forces, but if these forces are
present than an exact balance can be derived where the nonlinearity plays no role.
In addition to being conserved, these quantities are believed to play a critical role
in flow structure development, the energy cascade and energy dissipation, and the
microscale [8, 10, 27]. However, in most NSE simulations, very few or none of these
quantities are exactly conserved [3, 4]. Often, energy is at least bounded, as this
is required for numerical stability. However, in most finite element computations
mass is only weakly conserved [16], and this in turn breaks the conservation of
momentum, angular momentum and other important physical quantities [3]. One
solution to this problem is to use strongly divergence-free discretizations, such as
Scott-Vogelius finite elements, however these elements can require mesh restrictions
and higher degree polynomials, especially in the case of quadrilateral elements.
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Another approach is to change the form of the nonlinearity to the EMAC (Ener-
gy, Momentum, and Angular momentum Conserving) form proposed in [3], where
the identity

u · ∇u+∇p = 2D(u)u+ (∇ · u)u+∇P,

was derived, with P = p − 1
2 |u|

2. There it was shown that the NSE with this
nonlinear formulation used in (1)-(2) and discretized with standard elements such
as Taylor-Hood or the mini element, conserves energy, momentum and angular
momentum, as well as particular definitions of 2D enstrophy and 3D helicity. This is
in contrast to the more commonly used rotational, skew-symmetric, convective and
conservative forms, none of which conserve all of energy, momentum and angular
momentum [3].

Since the original EMAC paper [3] in 2017, EMAC has garnered a considerable
amount of attention in the CFD community. It has been used in problems involving
vortex-induced vibration [24], turbulent flow simulation [18], noise radiated by an
open cavity [21], high Reynolds number vortex dynamics [30], and more [7, 6, 23,
19, 2]. These numerical results have all been quite favorable, but there is still
much to be done for its analytical study. What is proven so far is results for
conservation properties [4], stability and convergence [4], efficient algorithms and
linearization development [4], and a longer time accuracy result that shows the
Gronwall exponent from EMAC is independent of the viscosity [22].

The purpose of this paper is to extend the study of EMAC to the case of
a projection method temporal discretizations together with finite element spatial
discretization. Projection methods were originally developed by Temam [32] and
Chorin [5], and work using a Hodge type decomposition idea to split the NSE
into two steps: the first solves the momentum equation without a divergence-free
constraint, and the second projects the step 1 solution into the divergence free space.
There have been many improvements made to projection methods over the years1,
but they all are still based on the fundamental decomposition / splitting from the
original development. Analysis of projection methods is rather different and more
complex than for standard coupled schemes, see e.g. [11, 25, 31], and herein we will
extend the study of EMAC discretizations using to projection methods.

This paper is organized as follows. In section 2, we provide mathematical no-
tation and preliminary information for the analysis. In section 3 we introduce the
projection method algorithm and show the conservation properties of it. Stability
and error analysis are presented in section 4. Section 5 further extends out work
to coupled schemes for both EMAC and SKEW. Numerical tests can be found in
section 6 followed by concluding remarks in the last section 7.

2. Notation and Preliminaries

We present in this section the necessary notation and mathematical prelimi-
naries for a smooth analysis to follow. We assume a convex polygonal (or smooth
boundary) domain Ω ⊆ Rd where d = 2, 3. The L2(Ω) inner product is denoted
as (·, ·) and the L2(Ω) norm with ||·||. Other norms will be clearly labeled with
subscripts.

1The folklore, as told to author LR by a former Chorin student, is that for many years no
Chorin student was allowed to graduate without improving on projection methods.


