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MONOLITHIC AND PARTITIONED FINITE ELEMENT

SCHEMES FOR FSI BASED ON AN ALE DIVERGENCE-FREE

HDG FLUID SOLVER AND A TDNNS STRUCTURAL SOLVER

GUOSHENG FU

Abstract. We present novel (high-order) finite element schemes for the fluid-structure interaction

(FSI) problem based on an arbitrary Lagrangian-Eulerian divergence-free hybridizable discontinu-

ous Gakerkin (ALE divergence-free HDG) incompressible flow solver, a Tangential-Displacement-
Normal-Normal-Stress (TDNNS) nonlinear elasticity solver, and a generalized Robin interface

condition treatment. Temporal discretization is performed using the high-order backward differ-

ence formulas (BDFs). Both monolithic and strongly coupled partitioned fully discrete schemes
are obtained. Numerical convergence studies are performed for the flow and elasticity solvers,

and the coupled FSI solver, which verify the high-order space-time convergence of the proposed

schemes. Numerical results on classical two dimensional benchmark problems also showed good
performance of our proposed methods.
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1. Introduction

Fluid-structure interaction (FSI) describes a multi-physics phenomenon that in-
volves the highly non-linear coupling between a deformable or moving structure and
a surrounding or internal fluid. There has been intensive interest in numerically
solving FSI problems due to its wide applications in biomedical, engineering and
architecture fields [18,32,48].

Based on different temporal discretization strategies, the numerical procedure
to solve FSI problems can be broadly classified into two approaches, see, e.g., [76]:
the monolithic approach and the partitioned approach. The monolithic approach
[5,40,49,65,73,95] solves for the fluid flow and structural dynamics simultaneously
by a unified algorithm. Since the interfacial conditions are automatically satisfied in
the solution procedure, monolithic schemes allow for more rigorous analysis of dis-
cretization and solution techniques, and are usually more robust than partitioned
schemes. On the other hand, the partitioned approach [30, 34, 66] gains compu-
tational efficiency over the monolithic approach by solving the fluid and structure
sub-problems separately in a sequential manner, usually with the help of a proper
explicit coupling condition on the fluid-structure interface to separate the fluid and
structure solvers. But the design of efficient partitioned schemes that produce sta-
ble and accurate results remains a challenge, especially when the fluid and structure
have comparable densities, as it happens in hemodynamic applications, due to nu-
merical instabilities known as the added mass effect [17]. The design and analysis
of partitioned numerical methods that address the added mass effect remains an
active research area in the past decade, see, e.g., [1, 3, 4, 10, 14, 39] and references
cited therein.

The finite element method is one of the most popular choices for the numerical
simulation of FSI problems [6, 11, 12, 86]. Of particular relevance to the current
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contribution is the class of discontinuous Galerkin (DG) finite element schemes,
which has gained increased interest in the computational fluid dynamics community
[21,27,29] due to their distinctive features, such as the ability to achieve high-order
accuracy on complex geometries using unstructured meshes and meshes with general
polygonal/polyhedral elements, the flexibility in performing h- and p-adaptivity,
the local conservation property, and the upwinding stabilization mechanism for
stabilizing dominant convection effects.

One of the major difficulties in nonlinear FSI problems stems from the movement
of the fluid domain, which makes these problems computationally very challenging,
where the major bottleneck is a robust fluid flow solver on deforming domains.
Various techniques have been introduced for fluid problems with moving boundaries
and interfaces, which include the interface-tracking approaches, e.g., the arbitrary
Lagrangian-Eulerian (ALE) method [31,50] and the space-time method [59,85,89]
where the computational mesh tracks and fits with the moving interfaces, and the
interface-capturing approaches, e.g., the immersed boundary method [60, 72], the
immersed finite element method [57,94], the fictitious domain method [46], and the
extended/generalized finite element method [19,41], where the computational mesh
is static and does not fit to the moving interfaces. The current work focuses on the
ALE approach for the fluid solver; see, e.g., [38, 58, 70] for ALE-DG schemes for
compressible flow problems, and [36,90] for incompressible flow problems.

There have been a few ALE-DG fluid solver based schemes for FSI problems,
see, e.g., [37,42,71] where the nonlinear structure equations were discretized using
the standard conforming Galerkin (CG) method, and [54, 90] where the structure
equations were also discretized using DG methodologies. We also cite the related
work [2] on space-time DG FSI solvers. One major criticism of DG schemes for prob-
lems involve linear system solvers is their associated high computational cost when
compared to standard CG schemes, mainly due to a larger number of (element-
based) degrees of freedom (DOFs) and the element-element DOFs couplings in the
resulting linear system problem. The hybridizable discontinuous Galerkin (HDG)
methods [20, 25, 64] were introduced to try to address this criticism. Basically,
HDG schemes introduce facet-based DOFs on the mesh skeleton so that element-
element DOFs couplings in the standard DG schemes are replaced by facet-element
couplings, which result in a reduced globally coupled linear system involves facet-
based DOFs only after a static condensation procedure that locally eliminates the
(local) element-based DOFs. Hence the computational cost of HDG schemes are
usually much lower than that of the DG schemes, especially for high-order approx-
imations [53, 93]. Besides being computationally cheaper, the HDG methods also
produce more accurate approximations than DG methods for certain problems due
to their superconvergence property [22–24,74].

The first HDG scheme for FSI problems was introduced in [81], where the au-
thors combined the HDG incompressible flow and elasticity solvers [64] with a
monolithic ALE formulation. The method was further improved in [82] with a re-
duced computational cost that uses a more efficient elasticity HDG solver and a
linear finite element approximate for the ALE map. More recently, an ALE parti-
tioned scheme [55] based on an HDG formulation for the compressible fluid and a
CG formulation for the structure has been proposed for FSI problems with a weakly
compressible fluid.

For incompressible flow problems, numerical discretizations that yield point-wise
divergence-free velocity approximations have attracted increased attention [51], due


