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Abstract

This paper concerns the reconstruction of a scalar coefficient of a second-order elliptic

equation in divergence form posed on a bounded domain from internal data. This prob-

lem finds applications in multi-wave imaging, greedy methods to approximate parameter-

dependent elliptic problems, and image treatment with partial differential equations. We

first show that the inverse problem for smooth coefficients can be rewritten as a linear

transport equation. Assuming that the coefficient is known near the boundary, we study

the well-posedness of associated transport equation as well as its numerical resolution using

discontinuous Galerkin method. We propose a regularized transport equation that allow

us to derive rigorous convergence rates of the numerical method in terms of the order of

the polynomial approximation as well as the regularization parameter. We finally provide

numerical examples for the inversion assuming a lower regularity of the coefficient, and

using synthetic data.
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1. Introduction

Let Ω be a C6-smooth bounded domain of Rn, n = 2, 3, with boundary Γ. Let ν(x) be the

outward normal vector at x ∈ Γ, and d = supx,y∈Ω ‖x − y‖ be the diameter of Ω. We set, for

η ∈ (0, d), σ0 ∈W 2,∞(Ω), Ωη = {x ∈ Ω,dist(x,Γ) > η}, and 0 < k1 < k2,

Σ = {σ ∈W 2,∞(Ω); σ = σ0 in Ω \ Ωη, k1 ≤ σ, ‖σ‖W 2,∞(Ω) ≤ k2}.

Let g be fixed in H
7
2 (Γ), and satisfy

∫
Γ
gdx = 0. Then, according to the classical elliptic

regularity theory

div(σ∇u) = 0 in Ω, σ∂νu = g on Γ,

∫
Ω

uσdx = 0, (1.1)
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has a unique solution uσ ∈ H5(Ω) [1], and there exists a constant c = c(Σ,Ω) > 0 such that

‖uσ‖H5(Ω) ≤ c. (1.2)

The goal of this work is to study the following inverse problem (IP): Given σ0 and the

interior data uσ|Ω, to reconstruct the conductivity σ|Ω.

This inverse problem is of importance in many different scientific and engineering fields

including photoacoustic tomography, studies of effective properties of composite materials, and

approximation of parametric partial differential equations. Photoacoustic tomography is a

recent hybrid imaging modality that couples diffusive optical waves with ultrasound waves to

achieve high-resolution imaging of optical properties of biological tissues [2–7]. The inverse

problem (IP) appears in the second inversion, called quantitative photoacoustic tomography,

where the derived internal data is used to recover the optical coefficients of the sample [8, 9].

Motivated by the search for sharp bounds on the effective moduli of composites many researchers

have considered the problem of characterizing mathematically among all the gradient fields those

solving the equation (1.1) for some function σ within the set Σ. In the context of approximation

of parameter-dependent elliptic problems by greedy algorithms the inverse problem (IP) has

been considered with infinitely many interior data available [10]. Hence solving the inverse

problem with a single datum may reduce the dimensionality of the set of parameters used to

accurately approximate a targeted compact set of solutions [11].

Given σ0 and the interior data uσ|Ω, the inverse problem can be recasted as a linear steady

transport equation satisfied by σ ∈ Σ,

∇σ · ∇uσ + (∆uσ)σ = 0 in Ω.

The steady transport equation is one of the basic equations in mathematical physics. It is widely

used in fluid mechanics, for example to model mass transfer [12]. From the mathematical point

of view there are several results addressing the well-posdeness of the equation. In order to

briefly review some of these results we introduce suitable boundary conditions. To do so we

split the boundary of Γ into three disjoint parts, the inflow Γin, the outflow set Γout, and the

characteristic set Γ0, defined by

Γin = {x ∈ Γ : ∇uσ · ν < 0}, Γout = {x ∈ Γ : ∇uσ · ν > 0}, Γ0 = Γ \ (Γin ∪ Γout). (1.3)

Assuming that ∇uσ never vanishes in Ω and using the method of characteristics, one can easily

show that the system

∇σ · ∇uσ + (∆uσ)σ = 0 in Ω, σ = σ0 on Γin, (1.4)

admits a unique solution. The method of characteristics can not be applied when the set

of characteristic curves has a complex structure, for example when ∇uσ vanishes. In order

to overcome this difficulty, many works have considered the case where the lower order term

dominates the transport term. In this framework the theory of linear steady transport equations

becomes part of a more general theory of degenerate elliptic equations ( [13–15], see also Chapter

12 in [12] and references therein). Let κ > 0 be a fixed constant. When n = 3, and assuming

that the interior data uσ verifies

inf
x∈Ω
|∆uσ(x)| > κ > 0, (1.5)


