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Abstract

In this paper, we consider the stochastic differential equations with piecewise continu-

ous arguments (SDEPCAs) in which the drift coefficient satisfies the generalized one-sided

Lipschitz condition and the diffusion coefficient satisfies the linear growth condition. Since

the delay term t − [t] of SDEPCAs is not continuous and differentiable, the variable sub-

stitution method is not suitable. To overcome this difficulty, we adopt new techniques to

prove the boundedness of the exact solution and the numerical solution. It is proved that

the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of

Lq̄(q̄ ≥ 2). We obtain the convergence order with some additional conditions. An example

is presented to illustrate the analytical theory.
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1. Introduction

In this paper, we consider the stochastic differential equations with piecewise continuous

arguments (SDEPCAs)

dx(t) = f(x(t), x([t]))dt+ g(x(t), x([t]))dB(t) (1.1)

on t ∈ [0, T ] with the initial value x(0) = x0 ∈ Rn, where f : Rn ×Rn → Rn, g : Rn ×Rn →
Rn×d are measurable functions and [t] denotes the greatest-integer part of t. SDEPCAs play an

important role in biomedicine, physics, neural networks, control theory, etc, represent a hybrid

of continuous and discrete dynamical systems and thus combine properties of both differential

and difference equations [1–6]. SDEPCAs can be regarded as stochastic delay differential equa-

tion with variable delay t − [t]. However, t − [t] is not continuous and differentiable. There

have been many studies on SDEs and SDDEs, you can refer to [7–12].
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There have been many works on the numerical approximations of SDEPCAs such as [13–17]

and [18]. The mean square convergence of the EulerMaruyama approximate solution is consid-

ered in [15] under the global Lipschitz condition and the linear growth condition. The strong

convergence and exponential stability of the split-step method are considered for SDEPCAs

with the one-sided Lipschitz condition for drift coefficient and the global Lipschitz condition

for diffusion coefficient in [14] and with monotone condition plus polynomially growing con-

ditions for drift coefficient and global Lipschitz condition for diffusion coefficient in [13]. The

tamed Euler method is considered in [16] and [18]. Under the local Lipschitz and the general

Khasminskii-type conditions, authors in [17] prove the convergence of explicit Euler method in

probability for SDEPCAs.

Recently, the truncated Euler-Maruyama method is proposed for SDEs in [19] and [20].

Zhang, Song and Liu investigated the partially truncated Euler-Maruyama method for SDDEs

in [21] and the truncated Euler-Maruyama(EM) method for stochastic functional differential

equations in [22] with Khasminskii-type condition. Guo et al. in [23] studied the strong con-

vergence of the truncated EM method for the stochastic differential equations with constant

delay under the generalized Khasminskii-type condition such that

xT f(x, y) +
1

2
|g(x, y)|2 ≤ K1(1 + |x|2 + |y|2)−K2|x|β +K2|y|β , (1.2)

where β > 2. The authors show the strong convergence of the truncated Euler-Maruyama in

qth moment for q ∈ [1, 2). Unfortunately, since t − [t] is discontinuous and non-differentiable,

the proof method in [23] is not applicable. According to the characteristics of [t], on each time

interval [n, n+1), the SDEPCA is a SDE. When the coefficients satisfy the generalized one-sided

Lipschitz condition, the key question is how to give the high-order moment estimation on the

right side of the inequality. Therefore, we prove the boundedness of higher-order moments of the

exact solution by estimating moments of solutions of a sequence of SDEs defined on successive

intervals [n, n + 1). Besides, we prove that the truncated EM method strongly converges to

SDEPCAs in the sense of Lq̄ (q̄ ≥ 2) and obtain the convergence order.

The rest of this paper is organized as follows. Section 2 introduces some basic assumptions

and the properties of the exact solution. In Section 3, we construct the truncated Euler-

Maruyama method. The pth moment boundedness and the convergence of the numerical so-

lutions is presented in Section 4. Section 5 obtain the convergence order with some additional

assumptions. An example is given to illustrate our conclusions in Section 6.

2. Theoretical Analysis for SDEPCAs

Throughout this paper, unless otherwise specified, we will use the following notations. If A

is a vector or matrix, its transpose is denoted by AT. If x ∈ Rn, then | x | is the Euclidean

norm. If A is a matrix, we let | A |=
√
trace(ATA) be its trace norm. For two real numbers

a and b, we use a ∨ b and a ∧ b to denote max(a, b) and min(a, b), respectively. If D is a set,

its indicator function is denoted by ID. Moreover, let (Ω,F ,P) be a complete probability space

with a filtration {Ft}t≥0 satisfying the usual conditions (that is, it is right continuous and

increasing while F0 contains all P-null sets), and let E denote the expectation corresponding to

P. Let B(t) be a d-dimensional Brownian motion defined on the probability space. Let C be a

positive constant and its value may change between occurrences. In the following, we consider


