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Abstract. The effect of the thickness of the dielectric boundary layer that connects
a material of refractive index n1 to another of index n2 is considered for the propagation
of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a spe-
cially chosen non-commuting sequence of collision and streaming operators acting on
a basis set of qubits, is theoretically determined that recovers the Maxwell equations to
second-order in a small parameter ǫ. For very thin but continuous boundary layer the
scattering properties of the pulse mimics that found from the Fresnel discontinuous
jump conditions for a plane wave - except that the transmission to incident ampli-
tudes are augmented by a factor of

√
n2/n1. As the boundary layer becomes thicker

one finds deviations away from the discontinuous Fresnel conditions and eventually
one approaches the expected WKB limit. However there is found a small but unusual
dip in part of the transmitted pulse that persists in time. Computationally, the QLA
simulations still recover the solutions to Maxwell equations even when this parame-
ter ǫ → 1. On examining the pulse propagation in medium n1, ǫ corresponds to the
dimensionless speed of the pulse (in lattice units).

PACS: 52.35.g, 03.67.Ac

Key words: Unitary algorithms, qubits, Maxwell equations, pulse propagation.

∗Corresponding author. Email addresses: gvahala@gmail.com (G. Vahala), lvahala@odu.edu (L. Vahala),
abhay@psfc.mit.edu (A. K. Ram), msoe.rsu@gmail.com (M. Soe)

http://www.global-sci.com/cicp 22 ©2023 Global-Science Press



G. Vahala et al. / Commun. Comput. Phys., 33 (2023), pp. 22-38 23

1 Introduction

For some time now [8–10, 15, 18, 19, 22–29, 32, 33], we have been developing qubit lat-
tice algorithms (QLAs) as a computational scheme to efficiently solve certain nonlinear
physics problems. QLA is a mesoscopic representation of a non-commuting set of in-
terleaved collision and streaming operators on a basis of qubits which in the continuum
limit perturbatively recovers the desired partial differential equations. To validate QLA,
we [23–25] considered the exactly soluble one dimensional (1D) nonlinear Schrödinger
equation (NLS)

i
∂ψ

∂t
+

∂2ψ

∂x2
+|ψ|2ψ=0.

In developing our QLA for 1D NLS we introduced 2 qubits, q0 and q1, per lattice site
to represent the wave function ψ. We then determined a sequence of interleaved non-
commuting unitary collision and streaming operators acting on this 2-qubit basis which
in the continuum limit recovered the 1D NLS to second-order in a perturbation parame-
ter ǫ. The unitary collision operator locally entangles the 2 qubits at that spatial site, while
the unitary streaming operator moves this quantum entanglement throughout the lattice.
In QLA simulations, the role of ǫ was the amplitude of the wave function ψ = q0+q1.
Because of the symplectic structure of the algorithm, long-time integration of QLA suc-
cessfully and with great precision [23–25] reproduced multiple soliton-soliton collision
induced phase shifts. Because of the unitary structure of QLA there is some hope that the
algorithm can be successfully encoded onto an error-correcting quantum computer, par-
ticularly when the quantum information science community solves the problem of how
to encode nonlinearities (which in our 1D NLS QLA is the |ψ|2-term).

Using the tensor products one can readily determine a QLA for the (non-integrable)
3D NLS and perform quantum turbulence simulations [26–28, 32, 33] for the time evolu-
tion of the ground state wave function for scalar Bose-Einstein Condensate (BECs). Like
its distant cousin, the lattice Boltzmann algorithm, QLA is ideally parallelized on classi-
cal supercomputers and so we could perform long time integration to examine the triple
energy cascade on a spatial grid of 57603, with 2 qubits/lattice site. Moreover, since QLA
places low memory demands, this spatial grid was readily handled by using 11276 cores
on a 2008 Cray supercomputer. It is interesting to note that the standard computational
fluid dynamic (CFD) codes to simulate the 3D Hamiltonian BEC quantum turbulence
required the introduction of a dissipative term (presumably to suppress numerical insta-
bilities). To recover energy conservation at each time step, the CFD codes then required
specific energy input terms at these time steps to counter the dissipative term. In con-
trast, the 3D BEC QLA algorithm preserved the Hamiltonian structure of the original
equations and remained numerically stable.

We [15, 18, 19, 22, 29] then generalized the QLA to consider non-Abelian quantum
vortices in spin-2 BECs. These spinor BECs consist of 5 coupled 3D Gross-Pitaevskii (i.e,
NLS-like) equations and required just 10 qubits/lattice site. The parallelization of our
QLA on Argonne’s MIRA supercomputer saw no saturation with cores, even up to the


