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Abstract. A design of a new heterogeneous code for LBM simulations is proposed.
By heterogeneous computing we mean a collaborative computation on CPU and GPU,
which is characterized by the following features: the data is distributed between CPU
and GPU memory spaces taking advantage of both parallel hierarchies; the capabil-
ities of both SIMT GPU and SIMD GPU parallelization are used for calculations; the
algorithms in use efficiently conceal the CPU-GPU data exchange; the subdivision of
the computing task is performed with an account for the strong points of both process-
ing units: high performance of GPU, low latency, and advanced memory hierarchy
of CPU. This code is a continuation of our work in the development of LRnLA codes
for LBM. Previous LRnLA codes had good efficiency both for CPU and GPU com-
puting, and allowed GPU simulation performed on data stored in CPU RAM without
performance loss on CPU-GPU data transfer. In the new code, we use methods and
instruments that can be flexibly adapted to GPU and CPU instruction sets. We present
the theoretical study of the performance of the proposed code and suggest implemen-
tation techniques. The bottlenecks are identified. As a result, we conclude that larger
problems can be simulated with higher efficiency in the heterogeneous system.
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1 Introduction

In the field of high-performance computational fluid dynamics (CFD), the Lattice Boltz-
mann Method (LBM) [1,2] is an extremely popular method. It was proposed as a devel-
opment of Lattice Gas Automata methods [3], and achieved worldwide recognition after
several classic publications [4,5]. From its early days, researchers predicted the power
of the method to simulate extreme-scale problems. This power is in the simplicity of
formulation of the method.
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LBM has been implemented on many cutting-edge supercomputers [6-9]. There exist
impressive applied simulations, such as wind modeling [10], flow simulation around the
skeletal structure of a depth sponge [11], simulation of cerebrovascular blood flow [12],
automotive simulation [13].

1.1 Heterogeneous computing model

In practice, usefulness of a method depends on the performance of its code implementa-
tion. Higher performance requires efficient use of computer hardware. Modern comput-
ers, as a rule, contain several computing devices with different architectures for hardware
and for software (Instruction Set Architecture — ISA). Let us discuss the problem of de-
veloping an LBM code that uses all available computing power with the most efficiency.
For such complex hybrid systems, one has to motivate the choice of and adequate (1)
computing model, (2) algorithms, (3) implementation tools.

In systems with several processing devices, one of them is the main processor (CPU,
host), and at least one is considered to be a coprocessor, which is dedicated to accelerating
specific tasks. In this work, GPUs are taken as coprocessors. Considering the computing
model, one may treat coprocessor as an extension of the processor. The coding tools in
this environment treat the hardware uniformly, hiding the heterogeneity from the user
with a common API (Application Programming Interface), such as OneAPI.

This method had its success in the previous generation. In 1980s, coprocessors such
as Intel 8087, Weitek X167 were used to speed up floating point operations. Their ar-
chitectures were extensions of ISA x86. Later, such coprocessors became integrated into
mainstream CPU, and their ISAs was integrated into CPU ISA. Now, SIMD extensions for
handling vector data (SSE/AVX2/AVX512) and matrix data (AMX) are also integrated in
CPU. At the same time, these extensions remain optional. They are used for accelera-
tion of some specific computing tasks. From this perspective, state-of-the art SIMD tools
can be seen as a stage of coprocessor evolution. Their use is available through specific
methods, compiled into libraries, and the interface can be obscured with compiler op-
tions or programming language extensions. The common tools for SIMD extensions of
ISA x86+ include intrinsic methods, vectorized data types and vectorized operations im-
plemented as special objects, extensions of compilers and programming language, loop
auto-vectorization with OpenMP or optimizing compilers.

In our research of CPU/GPU heterogeneous computing models, we choose to avoid
this evolution path. Its advantage is the fact that software code can be easily made uni-
versal for systems with and without coprocessors. Among LBM implementations, this
path was followed in [14]. As a consequence, the software that was developed before
introduction of coprocessors can be effortlessly adapted to new architectures. This is pro-
moted in the Intel OneAPI standard [15]. On the other hand, GPU devices have their own
address space and memory hierarchy, and memory bus with CPU RAM often presents it-
self as a performance bottleneck. If the fact is hidden from the programmer and ignored,
computation efficiency often decreases. With other computing models, it can be taken



