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Abstract. For fourth-order geometric evolution equations for planar curves
with the dissipation of the bending energy, including the Willmore and the
Helfrich flows, we consider a numerical approach. In this study, we construct
a structure-preserving method based on a discrete variational derivative me-
thod. Furthermore, to prevent the vertex concentration that may lead to numer-
ical instability, we discretely introduce Deckelnick’s tangential velocity. Here,
a modification term is introduced in the process of adding tangential velocity.
This modified term enables the method to reproduce the equations’ properties
while preventing vertex concentration. Numerical experiments demonstrate
that the proposed approach captures the equations’ properties with high accu-
racy and avoids the concentration of vertices.
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1 Introduction

In this paper, we design a numerical method for the Willmore and the Helfrich
flows for planar curves. The Willmore flow is a geometric evolution equation that
models the behavior of elastic bodies [23]. It is a gradient flow with regard to the
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bending energy
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2ds, (1.1)

where C(t) is a closed curve, s is the arc-length parameter of C(t), k is the curva-
ture of C(t), and c0 is a given constant [6, 7]. The Willmore flow is given by
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where δB is the gradient of B, X is a point on the closed curve C(t), and N is the
unit outward normal vector of C(t).

The Helfrich flow is a gradient flow for the bending energy under the con-
straint that the length and the enclosed area of the curve are conserved. The
Helfrich flow is given by
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where

〈F〉=
1

L

∫

C(t)
Fds, L=

∫

C(t)
ds. (1.4)

Helfrich proposed an optimization problem that mathematically models the sha-
pe of red blood cells [4, 12]. The Helfrich flow was proposed to solve this op-
timization problem [15, 16]. Note that the Willmore and the Helfrich flows are
fourth-order nonlinear evolution equations.

Some numerical approaches have been investigated for (1.2) and (1.3). There
are two primary problems in the numerical computation of these flows:

• Numerical computation using general-purpose approaches (e.g. the Runge-
Kutta method) can become unstable if the time step size is too large.

• When one approximates curves by polygonal curves, the vertices may be
concentrated as the time step proceeds. The concentration of vertices may
make numerical computations unstable.

There are some numerical methods regarding the above problems for (1.2) and
(1.3). In [1,2], linear numerical schemes are proposed. It is based on the finite ele-
ment method and approximates a closed curve by a closed polygonal curve. Ad-
ditionally, these methods implicitly involve a tangential velocity through a mass
lumped inner product. In [3], a semi-implicit numerical method for (1.2) is pro-


