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Abstract. We consider a numerical solution to the electromagnetic obstacle scattering

problem in three dimensions. Based on the Dirichlet-to-Neumann (DtN) operator, the

exterior problem is reduced into a boundary value problem in a bounded domain. An

a posteriori error estimate is deduced to include both the finite element approximation

error and the DtN operator truncation error, where the latter decays exponentially with

respect to the number of truncation terms. The discrete problem is solved by the adaptive

finite element method with the transparent boundary condition. The effectiveness of the

method is illustrated by numerical experiments.
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1. Introduction

Scattering problems are concerned with the interaction between an inhomogeneous

medium and an incident field. They have significant applications in many scientific ar-

eas including geophysical exploration, non-destructive testing, and medical imaging [13].

Motivated by significant applications, scattering problems have received great attention in

both of the engineering and mathematical communities. A considerable amount of mathe-

matical and numerical results are available for the scattering problems of acoustic, elastic,
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and electromagnetic waves. We refer to the monographs [21, 28, 30] on comprehensive

accounts of the electromagnetic scattering theory for Maxwell’s equations.

In this paper, we consider a numerical solution to the electromagnetic obstacle scat-

tering problem in three dimensions. In addition to the large scale computation of the

three-dimensional problem, there are two other main challenges: the scattering problem is

imposed in an unbounded domain and the solution may have local singularity due to the

nonsmooth surface of the obstacle. The first issue is concerned with the domain truncation

where a transparent boundary condition is preferred to avoid artificial wave reflection; the

second difficulty can be resolved by using the adaptive finite element method to balance

the accuracy and computational cost.

One of the most popular methods for domain truncation is the perfectly matched layer

(PML) technique, which was proposed by Bérenger to simulate the electromagnetic wave

propagation in unbounded domains [6]. The idea of PML is to put a layer of artificially ab-

sorbing media around the computational domain so that outgoing waves can be attenuated.

Mathematically, it was proved in [12] that when the thickness of the layer is infinity, the

PML solution in the domain of interest is the same as the solution of the original scattering

problem. However, in practice, the layer needs to be truncated to finite thickness which

inevitably introduces the truncation error. The overall error contains three parts when ap-

plying the finite element method to the PML problem: the truncation error of the PML

layer, the discretization error in the PML layer, and the discretization error in the domain

of interest. It was shown in [3] that the PML truncation error decays exponentially with

respect to the thickness of the layer and the PML parameters. As is known, the artificial

PML layer is constructed through the complex coordinate stretching [11], which makes the

PML layer to be an inhomogeneous medium. It is difficult to balance the efficiency and

accuracy if a uniform mesh refinement is used. If a thin PML layer is used to reduce the

computational cost, then the discretization error is large since the medium is inhomoge-

neous in the layer; on the contrary, if the discretization error is controlled to be small, then

a thick PML layer is preferred, which increases the cost. To handle this issue, the adaptive

finite element method is effective, especially when combined with a posteriori error esti-

mates. Based on numerical solutions, the a posteriori error estimates can be used for mesh

modification such as refinement or coarsening [32]. The method can control the error and

asymptotically optimize the approximation. Moreover, it can effectively deal with the issue

that the solution has local singularities in the domain of interest. It is worth mentioning

that even though the solution is smooth, the adaptive finite element method is still desir-

able due to the inhomogeneous medium in the PML layer. We refer to [8–10, 16, 18] for

the discussion of adaptive finite element PML methods for scattering problems in different

structures.

Another effective approach is to impose transparent boundary conditions to solve the

scattering problems formulated in open domains. A key step of the method is to con-

struct the Dirichlet-to-Neumann operator, which can be done via different manners such

as the boundary integral equation [14], the Fourier transform or Fourier series expan-

sions [17,22]. In this paper, observing that the solution is analytical when it is away from

the obstacle, we consider the Fourier series expansion of the solution on any sphere en-


