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Abstract. In this paper, we present linearized learning methods to accelerate the con-
vergence of training for stationary nonlinear Navier-Stokes (NS) equations. To solve
the stationary nonlinear NS equation with deep neural networks, we integrate lineariza-
tions of the nonlinear convection term in the NS equations into the training process of
multi-scale deep neural network (DNN) approximations of the NS solution. Four forms
of linearizations are considered. We solve highly oscillating stationary flows in complex
domains utilizing the proposed linearized learning with multiscale neural networks. The
results show that multiscale deep neural network combined with the linearized schemes
can be trained much faster and accurately than regular fully connected DNNs.
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1. Introduction

Deep neural network (DNN) machine learning methods have been researched as al-
ternative numerical methods for solving partial differential equations arising from many
practical engineering problems. The deep learning framework for solving those kinds of
problems uses the given partial differential equations as regularization in the loss function
during training, where the auto-differentiation can be applied to the inputs of the neural
network. Since auto differentiation with respect to the inputs of neural network are built-
in, thus there is no need for any pre-generated meshes in the solution domain. Therefore,
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such a framework has the potential of being a flexible meshless method to solve governing
equations from fluid and solid mechanics in complex geometries, as an alternative method
to traditional finite element method. Moreover, these methods have shown much power in
solving high dimensional parabolic PDEs [6,12,18].

Fluid mechanics, on the other hand, has also been one of the active research fields for
the applications of neural network with physical information as regularizations. In the work
of [2,13], the authors proposed a method that combines the Navier-Stokes (NS) equation
with visualization data to predict the velocity field and pressure field, with synthetic data
in [13] and real experimental imaging data in [2], respectively. In [5], a physical-informed
neural network is used for solving the Reynolds-averaged Navier-Stokes equations with
Reynolds-stress components (u_z, uv, and v2) as extra outputs of the neural networks. Rao
et al. [14] proposed a mixed-variable scheme with Cauchy stress tensor to eliminate the in-
tractability of the complex form of naive Navier-Stokes equation and its high-order deriva-
tives (e.g., V2 ) and this scheme was applied to learn the steady flow and the transient flow
passing a cylinder respectively. Furthermore, Oldenburg et al. [11] proposed the Geometry
Aware Physics Informed Neural Network to handle the Navier-Stokes equations with irreg-
ular geometry where they utilize the shape encoding network, i.e., an encoder, to reduce
the geometry dimensions to a size-fixed latent vector k and k will be the input of two addi-
tional neural networks, one to handle the boundary constraints and one to handle physical
information, i.e., the governing PDEs. In the meantime, the error estimations for neural
networks to approximate the Navier-Stokes equations has been studied in [4].

Recent studies on DNNs have shown that they have a frequency dependence perfor-
mance in learning solution of PDEs and fitting functions. Namely, the lower frequency
components of the solution are learned first and quickly compared with the higher fre-
quency components [17]. Several attempts have been made to remove such a frequency
bias for the DNNs. The main idea is to convert the higher frequency content of the solution
to a lower frequency range so the conventional DNNs can learn the solution in acceptable
training epochs. One way to achieve this goal is to use phase shifts [3] while the other
is to introduce a multiscale structure into the DNNs [10] where in which sub-neural net-
works with different scales will target different ranges of the frequency in the solutions.
The PhaseDNN has been shown to be very effective for high frequency wave propagation
while the MscaleDNN [10] has been used to learn highly oscillatory Stokes flow solutions
in complex domains [16] as well as high dimensional PDEs [18].

Most of the previous works are focusing on Linear PDEs. The learning of the solution of
linear PDEs via least squared residuals of the PDEs is in some sense equivalent to a fitting
problem in the frequency domain in view of the Parseval’s identity of Fourier transforms.
So it is natural the performance improvements of multiscale DNN also holds for learning
the solution of linear PDEs.

Additional difficulties arise when there are nonlinearities introduced in the PDEs. Based
on the results from Jin et al. [8], it is found that it could take ¢(10*) epochs to solve a simple
domain problem, thus ineffective and impractical especially when highly oscillating prob-
lems are to be considered. Also, the MscaleDNN applied directly to the nonlinear Navier-
Stokes equation did not produce the same large improvement over conventional DNNs as



