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Abstract. In this paper, we propose a variational multiscale method (VMM) for the
stationary incompressible magnetohydrodynamics equations. This method is defined
by large-scale spaces for the velocity field and the magnetic field, which aims to solve
flows at high Reynolds numbers. We provide a new VMM formulation and prove
its stability and convergence. Finally, some numerical experiments are presented to
indicate the optimal convergence of our method.
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1 Introduction

In this paper, we consider the stationary incompressible magnetohydrodynamics (MHD)
problem in Ω:

−R−1
e ∆u+(u·∇)u+∇p−Sc curlb×b= f, divu=0, (1.1a)

R−1
m Sc curl(curlb)−Sc curl(u×b)−∇r=g, divb=0, (1.1b)

subject to the boundary conditions

u|∂Ω =0, b·n|∂Ω =0, n×curlb|∂Ω =0, r|∂Ω =0. (1.2)
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Here, Ω is a bounded Lipschitz domain in Rd (d = 2 or 3), u the velocity field, b the
magnetic field, p the pressure, r a Lagrange multiplier, and f∈H−1(Ω)d and g∈ L2(Ω)d

given source terms. n respects the outward normal unit vector on ∂Ω, and Re, Rm and
Sc are the hydrodynamic Reynolds number, magnetic Reynolds number and coupling
number, respectively.

Furthermore, by taking the divergence of the first equation of Eq. (1.1b), we obtain
−∆r=divg in Ω. Since g is divergence-free in practical application, combining with the
fourth boundary condition of Eq. (1.2) gives r≡0. This means that the adding Lagrange
multiplier is reasonable.

MHD equations show the coupling of hydrodynamics phenomena and electromag-
netic phenomena. In recent years, a large number of applications of numerical method
to MHD flows reveal for its popularity [1–9]. In [1], a mixed finite element approach for
MHD system was proposed to solve a double saddle point problem by constructing a
Lagrange multiplier. The adding Lagrange multiplier allows us to solve the MHD sys-
tem in a non-convex domain. In [6], div-conforming Brezzi-Douglas-Marini elements
were used for the velocity field and first family of curl-conforming Nédélec elements
were employed for the magnetic field. In order to circumvent LBB condition, some stabi-
lized finite element methods were introduced in [2]. Furthermore, for dealing with MHD
nonlinear terms, the study on iterative methods has a lot of contributions in [10–15].

Hughes et al. [16] provided a variational framework for subgrid-scale modeling,
called variational multiscale method. It is shown that the flow can be decomposed into
resolved scales and unresolved scales. In the beginning, the method was performed for
the large eddy simulation by the scale separation. Collis [17] extended this method
to solve the incompressible Navier-Stokes equations by using a three-level partition,
which defined the large-scale, small-scale (resolved scales) and unresolved scales. This
method was successfully used to computational fluid dynamics at high Reynolds num-
ber, see [18–26] and the references therein. Here, John et al. [18–20] developed a finite
element variational multiscale method for incompressible flow, by defining a large-scale
space LH for the gradient of the velocity field. Zheng et al. [21, 24] provided some vari-
ational multiscale methods for incompressible flow based on two local Gauss integra-
tions. In addition, residual-free bubbles (RFB) method [27–30] based on subgrid scales
was introduced in a different way. It requires those unresolvable parts vanishing on the
boundaries of all elements. Thus it gives the boundary value problem on every element,
namely, solving these subgrid-scale models obtains residual-free bubbles. Then we can
compute the effect of unresolved scales onto resolved scales by these bubble functions.

In this paper, the VMM by defining some large-scale spaces for the velocity field and
the magnetic field is considered to solve the MHD system (1.1a)-(1.2). In this approach,
the unresolvable part is projected into some proper spaces and added to the original
discretization formulation. It implies that the method simulates the effect of unresolved
scales onto resolved scales. We use H1-conforming elements for the velocity field and
curl-conforming Nédélec elements [31, 32] for the magnetic field. Then we consider a
multiscale formulation of MHD system, by adding some artificial terms.


