Weak Harnack Inequalities for Eigenvalues and the Monotonicity of Hessian's Rank

Lu Xu and Bianlian Yan*
School of Mathematics, Hunan University, Changsha, Hunan 410082, China

Received 2 December 2021; Accepted (in revised version) 23 June 2022

Abstract

We study microscopic convexity properties of convex solutions of fully nonlinear parabolic equations under a structural condition introduced by Bian-Guan. We prove weak Harnack inequalities for the eigenvalues of the spatial Hessian of solutions and obtain the monotonicity of Hessian's rank with respect to time.

Key Words: Harnack inequalities, parabolic equations, microscopic convexity.
AMS Subject Classifications: 35K55, 35E10

1 Introduction

The convexity of solutions is an important topic in the study of partial differential equations, and there are two main research methods: macroscopic methods and microscopic methods.

For the macroscopic convexity argument, Korevaar initially established a concavity maximum principle for quasilinear equations in [13,14]. This result was used by Kennington in [12] to prove that for a class of parabolic equations the level sets of solutions are convex. Later, Korevaar's result was improved for parabolic equations by GrecoKawohl in [9]. Recently, Juutinen extended it to viscosity solutions of certain fully nonlinear parabolic equations in [11].

The microscopic convexity is concerned about Hessian's ranks of solutions. The microscopic technique for the convex solution was first established by Caffarelli-Friedman in [4] and Yau in [16] at the same time and then it was extended to high dimensions by Korevaar-Lewis [15]. Later in [1,2,5,7,8] it was generalized to fully nonlinear elliptic and parabolic equations. One method to establish microscopic convexity is to introduce the elementary symmetric polynomials σ_{k} of eigenvalues

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

[^0]of the Hessian as an auxiliary function. Recently, Székelyhidi-Weinkove in $[18,19]$ gave a new method for nonlinear elliptic equations by using a simple linear auxiliary function
\[

$$
\begin{equation*}
\lambda_{l}+2 \lambda_{l-1}+\cdots+l \lambda_{1} \tag{1.1}
\end{equation*}
$$

\]

This method utilizes the concavity of sums of the lowest eigenvalues.
Bian-Guan in [1] considered solutions of nonlinear parabolic equations

$$
u_{t}=F\left(D^{2} u, D u, u, x, t\right)
$$

under a structural condition for F (see (1.2) below), proved a constant rank theorem for a fixed time and the monotonicity of the rank with respect to time by using the auxiliary function $\sigma_{l+1}+\frac{\sigma_{l+2}}{\sigma_{l+1}}$. In this paper, we make the same assumption on F as in [1]. Based on the approach of [19] and using again the auxiliary function (1.1), we directly prove the weak Harnack inequality for each eigenvalue λ_{i} and the monotonicity of the rank with respect to time is a direct corollary of the weak Harnack inequalities.

Now we state our results precisely. For $\theta, R, \varepsilon>0$, we define

$$
\begin{aligned}
& Q=Q(\theta, R)=\left\{(t, x) \in \mathbb{R}^{n+1}\left|t \in\left(0, \theta R^{2}\right),|x|<R\right\}\right. \\
& Q_{\varepsilon}(\theta, R)=\left\{(t, x) \in \mathbb{R}^{n+1}\left|t \in\left(\varepsilon, \theta R^{2}-\varepsilon\right),|x|<R-\varepsilon\right\}\right.
\end{aligned}
$$

Let $\operatorname{Sym}_{n}^{+}(\mathbb{R})$ denote the space of semi-positive definite $n \times n$ matrices and F be a function

$$
F=F(A, p, u, x, t) \in C^{2}\left(\operatorname{Sym}_{n}^{+}(\mathbb{R}) \times \mathbb{R}^{n} \times \mathbb{R} \times Q\right)
$$

We assume that F satisfies the structural condition in [1] that

$$
\begin{equation*}
F\left(A^{-1}, p, u, x, t\right) \text { is locally convex in }(A, u, x) \text { for each pair }(p, t) . \tag{1.2}
\end{equation*}
$$

Suppose that $u \in C^{3}(Q)$ is a convex solution of

$$
\begin{equation*}
u_{t}=F\left(D^{2} u, D u, u, x, t\right), \tag{1.3}
\end{equation*}
$$

where $D^{2} u$ denotes the spatial Hessian $\left(u_{x_{i} x_{j}}\right), D u=\left(u_{x_{1}}, u_{x_{2}}, \cdots, u_{x_{n}}\right)$, and F satisfies the elliptic condition that for all $\xi \in \mathbb{R}^{n}$

$$
\begin{equation*}
\Lambda^{-1}|\xi|^{2} \leq F^{i j}\left(D^{2} u, D u, u, x, t\right) \xi^{i} \xi^{j} \leq \Lambda|\xi|^{2} \text { on } Q, \tag{1.4}
\end{equation*}
$$

for a constant $\Lambda>0$, where $F^{i j}$ is the derivative of F with respect to the (i, j) th entry $A_{i j}$ of A. Our main result is as follow.
Theorem 1.1. Let u be as above and $0 \leq \lambda_{1} \leq \cdots \leq \lambda_{n}$ be eigenvalues of the spatial Hessian $D^{2} u$. Let $\varepsilon>0,0 \leq \theta_{1}<\theta_{2}<\theta, r_{1}, r_{2} \in(0,1), 0<R \leq 1$,

$$
Q_{\varepsilon}=Q_{\varepsilon}(\theta, R), \quad Q_{\varepsilon}^{1}=Q_{\varepsilon}\left(\frac{\theta_{1}}{r_{1}^{2}}, r_{1} R\right), \quad Q_{\varepsilon}^{2}=\left(\theta_{2} R^{2}, 0\right)+Q_{\varepsilon}\left(\frac{\theta-\theta_{2}}{r_{2}^{2}}, r_{2} R\right)
$$

[^0]: *Corresponding author. Email addresses: xulu@hnu.edu.cn (L. Xu), bianlian@hnu.edu.cn (B. Yan)

