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Abstract. In rarefied gas flows, the spatial grid size could vary by several orders of
magnitude in a single flow configuration (e.g., inside the Knudsen layer it is at the
order of mean free path of gas molecules, while in the bulk region it is at a much
larger hydrodynamic scale). Therefore, efficient implicit numerical method is urgently
needed for time-dependent problems. However, the integro-differential nature of gas
kinetic equations poses a grand challenge, as the gain part of the collision operator
is non-invertible. Hence an iterative solver is required in each time step, which usu-
ally takes a lot of iterations in the (near) continuum flow regime where the Knudsen
number is small; worse still, the solution does not asymptotically preserve the fluid
dynamic limit when the spatial cell size is not refined enough. Based on the general
synthetic iteration scheme for steady-state solution of the Boltzmann equation, we pro-
pose two numerical schemes to push the multiscale simulation of unsteady rarefied
gas flows to a new boundary, that is, the numerical solution not only converges within
dozens of iterations in each time step, but also asymptotically preserves the Navier-
Stokes-Fourier limit in the continuum flow regime, when the spatial grid is coarse, and
the time step is large (e.g., in simulating the extreme slow decay of two-dimensional
Taylor vortex, the time step is even at the order of vortex decay time). The properties
of fast convergence and asymptotic preserving of the proposed schemes are not only
rigorously proven by the Fourier stability analysis for simplified gas kinetic models,
but also demonstrated by several numerical examples for the gas kinetic models and
the Boltzmann equation.
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1 Introduction

Rarefied gas flows have attracted significant research interests in the past decades due to
their wide range of engineering applications, including space vehicle re-entry, microelec-
tromechanical system processing, and shale gas extraction. These flows are characterized
by the Knudsen number Kn, which is defined as the ratio of mean free path λ (or mean
collision time tc) of gas molecules to the characteristic flow length L (or time/period
t0). Only when the Knudsen number is small can the rarefied gas dynamics be well de-
scribed by macroscopic equations in the bulk flow region [1], such as the Euler, Navier-
Stokes-Fourier (NSF), Burnett, super-Burnett [2], and (regularized) Grad 13 and 26 mo-
ments equations [3]; see the short review on the performance of dozens macroscopic
equations [4]. Also noted that although the lattice Boltzmann method can simulate the
Poiseuille flow with the tuning of effective viscosity [5,6], they cannot be applied to gen-
eral rarefied gas flows [7]. For general values of Knudsen number, however, the Boltz-
mann equation or simplified gas kinetic equations, which uses the velocity distribution
function to describe the gas dynamics at the mesoscopic level, should be used.

Since the velocity distribution function is defined in the six-dimensional phase space,
the computational cost of memory and time for solving gas kinetic equations is huge.
Thus, many numerical methods are proposed to solve the kinetic equations under a nu-
merical scale larger than the kinetic one [8–15], that is, the spatial grid size ∆x≫λ, and/or
the time step ∆t ≫ τc. Some schemes asymptotically preserve the Euler limit, as they
become a consistent discretization of the Euler equations when Kn → 0 [9, 10]. Never-
theless, from a practical point of view, the Euler equations cannot be applied to most
flows, even when the Knudsen number is small. For instances, in the Poiseuille flow [16]
and Rayleigh-Brillouin scattering [17], the flow velocity and density perturbation scale
as 1/Kn. If the Euler equations are used, they become divergent, which is not physi-
cal. Therefore, some numerical schemes are designed to asymptotically preserve the NSF
limit when ∆t≫τc [11,12], under the assumption that the spatial derivatives are handled
exactly. Recently, it is found that the NSF limit can be captured by the (discrete) unified
gas-kinetic scheme, when both the time step and spatial cell size are much larger than the
corresponding kinetic scales [13, 14, 18, 19]: ∆x∼

√
KnL≫λ and ∆t∼

√
Knt0≫τc.

In reality, rarefied gas flows are intrinsically multiscale, say, in the two-dimensional
thermal edge flow in the (near) continuum flow regime where the Knudsen number is
small [17], the spatial grid size varies by several orders of magnitude: inside the Knudsen
layer (which occupies a spatial region within a few mean free path away from the solid
walls) ∆x∼λ∼0.001, while in the bulk region it is at a much larger hydrodynamic scale:


	Introduction

