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Abstract. A generalized homotopy-based Coiflet-type wavelet method for solving
strongly nonlinear PDEs with nonhomogeneous edges is proposed. Based on the im-
provement of boundary difference order by Taylor expansion, the accuracy in wavelet
approximation is largely improved and the accumulated error on boundary is suc-
cessfully suppressed in application. A unified high-precision wavelet approximation
scheme is formulated for inhomogeneous boundaries involved in generalized Neu-
mann, Robin and Cauchy types, which overcomes the shortcomings of accuracy loss
in homogenizing process by variable substitution. Large deflection bending analy-
sis of orthotropic plate with forced boundary moments and rotations on nonlinear
foundation is used as an example to illustrate the wavelet approach, while the ob-
tained solutions for lateral deflection at both smally and largely deformed stage have
been validated compared to the published results in good accuracy. Compared to
the other homotopy-based approach, the wavelet scheme possesses good efficiency in
transforming the differential operations into algebraic ones by converting the differen-
tial operators into iterative matrices, while nonhomogeneous boundary is directly ap-
proached dispensing with homogenization. The auxiliary linear operator determined
by linear component of original governing equation demonstrates excellent approach-
ing precision and the convergence can be ensured by iterative approach.
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1 Introduction

To obtain high-precision solution for nonlinear differential equations with inhomoge-
neous boundaries has been a critical issue in quantitative analysis of science and engi-
neering, which is of great significance in developing effective approaches. Many numeri-
cal techniques have been proposed and can be classified into global and local techniques,
with the former involving the derivatives of all points in the whole discrete domain, such
as Fourier and Chebyshev spectral method [1], Discontinuous Galerkin [2], spectral ele-
ment methods [3], spectral volume and difference method [4], while the local strategies
obtain derivatives in terms of adjacent element, such as Finite Difference Method [5],
Finite Element Method [6], Finite Volume Method [7], Boundary Element Method [8].

Homotopy Analysis Method (HAM) [9] has been an analytical powerful technique
for dealing with strongly nonlinear problems, due to its freedom in selection of basis
by leveraging the convergence properties in developing new numerical schemes. Von
Gorder [10] has combined the Fourier method and the HAM to solve the large deflec-
tion of thin Kármán plate based on orthogonally sinusoidal basis in good agreement
with exact solutions. Mosta et al. [11, 12] have formulated Spectral Homotopy Analy-
sis Method (SHAM) by introducing Chebyshev and Legendre basis in the framework,
which successfully overcome the limitations of initial guess and prove the convergence
in Sobolev Spaces. Cullen and Clarke [13] have constructed Gegenbauer orthogonal ba-
sis expanding Chebyshev polynomials by Schmidt orthogonalization and proposed a fast
and highly accurate Gegenbauer Homotopy Analysis Method, with the iterative matrix
converted into sparse banded one up to machine precision, while the matrices of col-
location points based on Chebyshev differential operators occupy large computational
memory resource.

As a bright pearl of modern functional mathematics, wavelet [14, 15] has been an ef-
ficient tool in solving partial differential equations, due to its significant superiority on
localized analysis. Early research on wavelet can be dated back to an orthogonal com-
pactly supported Haar wavelet [16], which has been subsquently developed by many
investigators [17–20]. Sweldens et al. [21, 22] have constructed a flexible wavelet lifting
scheme [23], which are not necessarily the translates and dilates of one fixed function
dependent of Fourier transformation. Dohono et al. [24–27] have applied a series of di-
rectional wavelets to study the characteristics of higher dimensional space introduced
into multi-scale geometric analysis, such as Curvelets, Wedgelets, Ridgelets, Contourlets.
Similar to early research all independent in various fields, present research of wavelet has
not been formed a relatively unified framework and still in the process of exploration.

Many wavelet numerical methods [28–30] have been developed in solving differ-
ential equation, firstly studied by Qian and Weiss [31], which are in turn broadly cate-
gorised into single scale wavelet and adaptive methods, with the former indicating ap-
plying scaling function directly as basis in traditional methods, such as wavelet Galerkin
method [32], wavelet collocation method [33], wavelet finite element method [34], closed
wavelet method [35], wavelet multi-resolution interpolation Galerkin method [36, 37],


