Geometrical Characterizations of Non-Radiating Sources at Polyhedral and Conical Corners with Applications

Huaian Diao ${ }^{1}$, Yueran Geng ${ }^{1, *}$, Hongyu Liu ${ }^{2}$ and Qinghua Yu^{3}
${ }^{1}$ School of Mathematics and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China.
${ }^{2}$ Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong SAR, P.R. China.
${ }^{3}$ The School Attached to Dalian Maritime University, Dalian 116000, P.R. China.

Received 16 March 2023; Accepted 18 July 2023

Abstract

Considering the acoustic source scattering problems, when the source is non-radiating/invisible, we investigate the geometrical characterization for the underlying sources at polyhedral and conical corner. It is revealed that the non-radiating source with Hölder continuous regularity must vanish at the corner. Using this kind of geometrical characterization of non-radiating sources, we establish local and global unique determination for a source with the polyhedral or corona shape support by a single far field measurement. Uniqueness by a single far field measurement constitutes of a long standing problem in inverse scattering problems.

AMS subject classifications: 35Q60, 378A46, 35P2
Key words: Non-radiating sources, corner singularity, vanishing, inverse scattering, single far-field measurement.

[^0]
1 Introduction

Let Ω be a bounded Lipschitz domain with a connected complement in \mathbb{R}^{3}. Consider the following time-harmonic acoustic source scattering problem:

$$
\begin{align*}
& \left(\Delta+k^{2}\right) u(x)=f(x) \quad \text { in } \mathbb{R}^{3}, \\
& \lim _{r \rightarrow \infty} r\left(\partial_{r}-\mathrm{i} k\right) u=0, \quad r=|x|, \tag{1.1}
\end{align*}
$$

where $f=\chi_{\Omega} \varphi, \varphi \in L^{\infty}\left(\mathbb{R}^{3}\right)$ and $k \in \mathbb{R}_{+}$. The limit in (1.1) is known as the Sommerfeld radiation condition which characterizes the outgoing nature of the radiating wave. Throughout this paper we assume that the wave number $k \in \mathbb{R}_{+}$is fixed. By the variational approach, it is known that (1.1) admits a unique solution $u \in H_{l o c}^{2}\left(\mathbb{R}^{n}\right)$ [11]. Therefore, the following asymptotic expansion for the acoustic wave field u to (1.1) is given by

$$
\begin{equation*}
u(x)=\frac{e^{\mathrm{i} k|x|}}{|x|} u_{\infty}(\hat{x})+\mathcal{O}\left(\frac{1}{|x|^{3 / 2}}\right) \quad \text { as } \quad|x| \rightarrow+\infty, \tag{1.2}
\end{equation*}
$$

where $u_{\infty}(\hat{x})$ is referred to be the far field pattern of u and $\hat{x}=x /|x|$. By the Rellich theorem, there is one to one correspondence between the wave field u and the real analytic function $u_{\infty}(\hat{x})$ defined on the unit sphere S^{2}.

In this paper we are mainly concerned with geometrical characterization of non-radiating source at polyhedral and conical corners. In the following we first give the definition of non-radiating source.

Definition 1.1. We say that φ is a non-radiating source corresponding to (1.1) if the far field pattern of u to (1.1) associated with φ identically equals to zero, namely $u_{\infty}(x) \equiv 0$.

It is clear that a non-radiating source φ is invisible to the far field measurement. By Rellich Theorem [11], if the invisibility of the source φ occurs, one directly has

$$
\begin{cases}\Delta u+k^{2} u=\varphi & \text { in } \Omega \tag{1.3}\\ u=\partial_{\nu} u=0 & \text { on } \partial \Omega,\end{cases}
$$

where v signifies the unit outward normal vector to $\partial \Omega$. We shall give geometrical characterizations of non-radiating sources at polyhedral and conical corners. Namely, we shall reveal that if Ω has a conic or polyhedral corner, where φ is Hölder continuous near it, then φ must vanish at the underlying corner. This kind of the geometrical characterization of non-radiating source can help us to study the inverse source shaper problem for (1.1), which can be described by

$$
\begin{equation*}
u_{\infty}(\hat{x}), \quad \hat{x} \in S^{2} \mapsto \partial \Omega, \tag{1.4}
\end{equation*}
$$

which intends to determine the shape of the support of the inaccessible source f.

[^0]: *Corresponding author. Email addresses: diao@jlu.edu. cn (H. Diao), gengyr1019@mails.jlu. edu.cn (Y. Geng), hongyliu@cityu.edu.hk (H. Liu), 3255742434@qq.com (Q. Yu)

