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Abstract

We propose a multiscale projection method for the numerical solution of the irtatively

regularized Gauss-Newton method of nonlinear integral equations. An a posteriori rule is

suggested to choose the stopping index of iteration and the rates of convergence are also

derived under the Lipschitz condition. Numerical results are presented to demonstrate the

efficiency and accuracy of the proposed method.
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1. Introduction

The aim of this paper is to propose a projection method of solving nonlinear integral equa-

tions of the type

F (x) = y, (1.1)

where F : D(F ) ⊂ X → X is a nonlinear Fredholm integral operater between the Hilert space

X and defined by

F (x)(s) :=

∫ 1

0

k(s, t, x(t))dt, s ∈ [0, 1],

where the kernel k is a continuous function on [0, 1]× [0, 1]×R. Eq. (1.1) is a typical example

of an ill-posed problem, then the regularization technique has to be taken into account to yield

the stable approximation [7, 17, 18].

Several regularization methods in the existing literature have been used to solve nonlinear

integral equations. The regularization method [3, 16, 17], a two-step iterative process [15] have

been considered to some extent and important results have already been obtained, but either

lack of error analysis, or lack of an a posteriori rule.

Due to the faster convergence, the iteratively regularized Gauss-Newton method has received

extensive attention in recent years [1,2,8,9]. Assume that the sequence {αk} satisfy the following

conditions:

αk > 0, 1 ≤ αk

αk+1
≤ r, lim

k→∞
αk = 0 (1.2)
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with a constant r > 1, this method constructs the iterates {xδ
k} by the following recursive

algorithm:

xδ
k+1 = xδ

k − (αkI + F ′(xδ
k)

∗F ′(xδ
k))

−1(F ′(xδ
k)

∗(F (xδ
k)− yδ) + αk(x

δ
k − x∗)) (1.3)

from the initial guess x0 = x∗ ∈ D(F ), where yδ is the only available approximation of y

satisfying

‖yδ − y‖ ≤ δ (1.4)

with a given noise level δ > 0.

We notice that most of the available results on the iteratively regularized Gauss-Newton are

implemented in infinite dimensional space. In practical applications, we are more interested in

considering this methods in a finite-dimensional setting.

There are many papers on the projection method to solve linear ill-posed equations, and

many results have been obtained [5,10,11,14]. Therefore, we wonder if we can use the projection

method to solve the nonlinear ill-posed problem? Motivated by this idea, this article attempts

to solve the nonlinear ill-posed problem by using the projection method.

In this paper we propose a projection method for the iteratively regularized Gauss-Newton

method and investigate the influence of the projection method. We focus on error analysis and

and try to assert what conditions are appropriate for the discussions.

Throughout the paper it is assumed that F has continuous Fréchet derivative over D(F ).

Assume that Eq. (1.1) has a solution x† such that

Bρ(x
†) := {x ∈ Xn : ‖x− x†‖ ≤ ρ} ⊂ D(F ) (1.5)

with a positive number ρ > 10r‖x∗ − x†‖.
We next describe the multiscale Galerkin method for solving Eq. (1.3). We denote N :=

{1, 2, . . .}, N0 := {0, 1, 2, . . .} and Zn = {0, 1, . . . , n − 1}. We suppose that {Xn, n ∈ N0} is

a sequence of finite dimensional subspaces of X satisfying [4]

Xn ⊂ Xn+1, n ∈ N0,
⋃

n∈N0

Xn = X.

For each i ∈ N, let Wi be the orthogonal complement of Xi−1 in Xi. For a fixed n ∈ N, we

have the decomposition

Xn = X0 ⊕⊥
W1 ⊕⊥ · · · ⊕⊥

Wn.

We assume that Wi has a basis {wij , j ∈ Zw(i)}. This means that Xn = span{wij : (i, j) ∈
Un}, where Un := {(i, j) : j ∈ Zw(i), i ∈ Zn+1}.

We now formulate the Galerkin method for solving Eq. (1.3). To this end, for each n ∈ N0,

we let Pn denote the orthogonal projection from X onto Xn. The traditional Galerkin method

for solving Eq. (1.3) is to find xδ
k,n ∈ Xn such that

{

xδ
0,n = Pnx

∗,

xδ
k+1,n = xδ

k,n + (αkI +A∗
k,nAk,n)

−1[A∗
k,n(y

δ − F (xδ
k,n)) + αk(Pnx

∗ − xδ
k,n)],

(1.6)

where Ak,n := PnF
′(xδ

k,n)Pn and A∗
k,n := PnF

′(xδ
k,n)

∗Pn.

To write (1.6) in its equivalent matrix form, we make use of the multiscale basis functions.

We write the solution xδ
k,n ∈ Xn as [14]

xδ
k,n =

∑

(i,j)∈Un

ckijwij ∈ Xn.


