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Abstract

In this paper, we first present the optimal error estimates of the semi-discrete ultra-weak

discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equa-

tions. Then, coupling with a kind of Runge-Kutta type implicit-explicit time discretization

which treats the convection term explicitly and the diffusion term implicitly, we analyze

the stability and error estimates of the corresponding fully discrete schemes. The fully

discrete schemes are proved to be stable if the time-step τ ≤ τ0, where τ0 is a constant in-

dependent of the mesh-size h. Furthermore, by the aid of a special projection and a careful

estimate for the convection term, the optimal error estimate is also obtained for the third

order fully discrete scheme. Numerical experiments are displayed to verify the theoretical

results.

Mathematics subject classification: 65M12, 65M15, 65M60.

Key words: The ultra-weak discontinuous Galerkin method, Convection-diffusion, Implicit-

explicit time discretization, Stability, Error estimate.

1. Introduction

Among the time discretization methods for solving convection-diffusion problems, explicit

time discretization results in severe time step restriction, while pure implicit time discretization

always requires solving large non-linear systems of equations. In [19], a kind of Runge-Kutta

(RK) type implicit-explicit (IMEX) time discretization [1] coupled with the local discontinuous

Galerkin (LDG) spatial discretization [7] was studied for one dimensional linear convection-

diffusion equations. The corresponding fully discrete IMEX-LDG schemes were proved to be

unconditionally stable under the time step restriction τ ≤ τ0, where τ0 depends only on the

coefficients of convection and diffusion and not on the mesh size. The similar results were

also extended to non-linear problems in [20] and to multi-dimensional cases in [21]. Later,

the stability of IMEX time discretization combined with the embedded DG method [10], the
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(σ, µ)-family DG method [12] and the directed DG method [14] was investigated in [8, 16, 22],

respectively.
The stability mechanism of the aforementioned fully discrete methods lies in that, the anti-

dissipation of the explicit discretization for the convection term can be controlled by the stability

provided by the implicit discretization for the diffusion term. In this paper, we concern about

whether the same mechanism is inherent to the ultra-weak discontinuous Galerkin (UWDG)

method coupled with IMEX time discretization.
The UWDG method was developed to solve time dependent partial differential equations

(PDEs) containing high order spatial derivatives by Cheng and Shu [5]. Unlike the LDG me-

thod, the UWDG method does not introduce any auxiliary variables. The main idea of the

UWDG method is to apply integration by parts repeatedly and to move all the spatial deriva-

tives from the trial function to the test function in the weak formulations. The UWDG method

has been successfully applied to kinds of high order PDEs. In [9], Fu and Shu designed an

energy-conserving UWDG method for the generalized KdV equation. The UWDG method for

generalized stochastic KdV equations was studied in [13], for Schrödinger equations was studied

in [3,4]. Recently, the UWDG method combined with the LDG method to solve the PDEs with

high order spatial derivatives was developed by Tao et al. [15,18]. It is worth pointing out that,

most of the above works focus on the theoretical analysis for the semi-discrete UWDG method.

Although IMEX time discretization is used in numerical experiments, such as in [3, 13], there

is no theoretical analysis for the fully discrete IMEX-UWDG scheme. Meanwhile, the error

estimates of the semi-discrete UWDG method for convection-diffusion problems [5] are not op-

timal, but numerical experiments show optimal accuracy. As far as the authors know, there is

no theoretical analysis to fill this gap so far.
In this work, we will first present the optimal error estimates of the semi-discrete UWDG

scheme for solving one-dimensional linear convection-diffusion equations with periodic bound-

ary conditions. The main technique is a special projection to be defined following from [3]. The

projection can eliminate the projection errors involved in the diffusion part, but the projection

errors involved in the convection part can not be eliminated, so traditional treatment will lose

accuracy. By the aid of the stability provided by diffusion discretization, we obtain optimal

error estimates for the semi-discrete UWDG scheme.
We will also perform the analysis of stability and error estimates for some fully discrete

IMEX-UWDG schemes. Typically, three specific RK type IMEX schemes coupled with the

UWDG spatial discretization will be considered. By energy analysis, we prove similar stability

results to that for the IMEX-LDG method in [19]. Different from the LDG method, where the

discretization of the diffusion part can be converted into some inner products of auxiliary vari-

ables, there are no auxiliary variables which can be used in the UWDG method. With respect to

the UWDG discretization, we make full use of the symmetric and dissipative properties, which

will help us to build up negative definite quadratic forms about the implicit discretization of

diffusion part, so as to obtain the desired stability results. Along the similar line of stability

analysis and by the aid of the special projection mentioned above, we also carry out the optimal

error estimates for the third order IMEX-UWDG scheme.
The paper is organized as follows. We first present the semi-discrete UWDG scheme for the

model problem and give its optimal error estimates in Section 2. Then we give the stability

analysis of three specific fully discrete IMEX-UWDG schemes in Section 3. In Section 4, we

give optimal error estimates for the third order fully discrete IMEX-UWDG scheme. Numerical

results are given in Section 5 to verify the main theoretical results. In Section 6, we give some

concluding remarks.


