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Abstract. In various Hilbert spaces of analytic functions on the unit disk, we charac-
terize when a function has optimal polynomial approximants given by truncations of
a single power series or, equivalently, when the approximants stabilize. We also intro-
duce a generalized notion of optimal approximant and use this to explicitly compute
orthogonal projections of 1 onto certain shift invariant subspaces.
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1 Background, introduction, and notation

Throughout this paperHwill be a reproducing kernel Hilbert space of analytic functions
on the unit disk D. We will denote the reproducing kernel for H as kλ(z) = k(z, λ) and
the normalized reproducing kernel as k̂λ = kλ/‖kλ‖H. That is, a priori, for λ ∈ D, we
have f (λ) = 〈 f , kλ〉H. Further, we will assume thatH satisfies the following:

1. The polynomials P are dense inH.

2. The forward shift S, mapping f (z) 7→ z f (z), is a bounded operator onH.

When V ⊆ H is a closed subspace, we will use ΠV : H → V to denote the orthogonal
projection from H onto V. For n ∈ N, we will denote by Pn the set of complex polyno-
mials of degree less than or equal to n. For f ∈ H, we define fPn := {p f : p ∈ Pn}. Note
that fPn is always a closed finite-dimensional subspace of H. When f is fixed, we will
use Πn : H → fPn to denote the orthogonal projection onto fPn.
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1.1 Cyclicity and shift invariant subspaces

The results to come are born from the study of shift invariant subspaces and cyclic func-
tions. We say a subspace V ⊆ H is shift invariant if SV ⊆ V. We say a function f ∈ H is
cyclic (inH) if

[ f ] := span{zn f : n ≥ 0} H

is equal to H itself. Note that [ f ] is a (possibly trivial) shift invariant subspace and is
the smallest closed subspace of H containing f . In [7], it was pointed out that f ∈ H is
cyclic if and only if, for any cyclic function g ∈ H, there exist polynomials (pn)n≥0 so that
‖pn f − g‖H → 0. From this equivalence, and taking g = 1 in spaces where 1 = k0, the
study of optimal polynomial approximants has arisen. The optimality referred to here is
with respect to the distance between fPn and 1, i.e.,

min
p∈Pn
‖p f − 1‖H.

The element of fPn minimizing this distance will be denoted p∗n f (details to come in
Section 2).

Approximation problems of this kind were first studied under the engineering lens of
filter design in the 1970’s and 80’s, referred to as least squares inverses (see, e.g., [8,9,15]).
It seems this body of work was not known to mathematicians prior to the discussion
in [6].

A modern jumping off point for optimal approximants could be considered the work
in [12]; the authors study the optimal approximants of the function 1− z in order to char-
acterize the cyclicity of holomorphic functions on the closed unit disk. In [6], the authors
compute Taylor coefficients of 1− p∗n f in weighted Hardy spaces (discussed below) when
f is a polynomial, proving results about the convergence of (1− p∗n f ).

In [4], the authors study a larger class of reproducing kernel Hilbert spaces and give
results on accumulation points, along with lower bounds on the moduli of zeros of opti-
mal approximants. Then in [5], the authors dive into orthogonal polynomials and repro-
ducing kernels in order to get lower bounds on the moduli of zeros of optimal approxi-
mants in Dirichlet-type spaces.

Following these themes, we would like to develop some theory for different choices of
g (cyclic or not) in considering ‖p f − g‖H, and then explore the relationship between op-
timal approximants and generalized inner functions (this relationship first studied in [3]).
This will then yield some observations which allow us to explicitly compute Π[ f ](1) when
f is a polynomial.

In particular: Section 2 develops the framework necessary for handling general op-
timal approximants. Section 3 deals with stabilization of optimal approximants to k̂0/ f ,
with Theorem 3.1 characterizing when p∗n f = p∗M f for all n great than some fixed M ≥ 0.
Section 4 discusses stabilization of general optimal approximants, with Theorem 4.1 giv-
ing a version of Theorem 3.1 for general approximants. Section 5 develops the theory of
reproducible points, and then returns to certain spaces where k̂0 = 1, with Theorem 5.1


