The Neumann Problem for a Class of Fully Nonlinear Elliptic Partial Differential Equations

Bin Deng*

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 20 October 2021; Accepted (in revised version) 23 June 2022

Abstract. In this paper, we establish global C^2 estimates to the Neumann problem for a class of fully nonlinear elliptic equations. As an application, we prove the existence and uniqueness of *k*-admissible solutions to the Neumann problems.

Key Words: Neumann problem, fully nonlinear, elliptic equation. **AMS Subject Classifications**: 35J60, 35J09, 35J40

1 Introduction

Let $\Omega \subset \mathbb{R}^n$ $(n \ge 3)$ be a bounded domain and $\nu(x)$ be the outer unit normal at $x \in \partial \Omega$. Suppose $f \in C^2(\Omega)$ is a positive function and $a, b \in C^3(\partial \Omega)$ with a > 0. In this paper, we consider the Neumann problem of the fully nonlinear equation

$$\begin{cases} S_k(W) = f(x), & \Omega, \\ u_{\nu} = -a(x)u + b(x), & \partial\Omega, \end{cases}$$
(1.1)

where the matrix $W = (w_{\alpha_1 \cdots \alpha_m, \beta_1 \cdots \beta_m})_{C_n^m \times C_n^m}$ with the elements as follows, for $1 \le m \le n-1$,

$$w_{\alpha_1\cdots\alpha_m,\beta_1\cdots\beta_m} = \sum_{\gamma=1}^n \sum_{i=1}^m u_{\gamma\alpha_i} \delta^{\alpha_1\cdots\alpha_{i-1}\gamma\alpha_{i+1}\cdots\alpha_m}_{\beta_1\cdots\beta_{i-1}\beta_i\beta_{i+1}\cdots\beta_m'}$$
(1.2)

a linear combination of u_{ij} , where $u_{ij} = \frac{\partial^2 u}{\partial x_i \partial x_j}$ and $\delta^{\alpha_1 \cdots \alpha_{i-1} \gamma \alpha_{i+1} \cdots \alpha_m}_{\beta_1 \cdots \beta_{i-1} \beta_i \beta_{i+1} \cdots \beta_m}$ is the generalized Kronecker symbol. All indexes $\alpha_1, \beta_1, \cdots$ come from 1 to *n*. For each $1 \le k \le C_n^m$, we define

$$S_k(W) = S_k(\lambda(W)) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le C_n^m} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_k},$$

http://www.global-sci.org/ata/

330

©2023 Global-Science Press

^{*}Corresponding author. Email address: bingomat@mail.ustc.edu.cn (B. Deng)

B. Deng / Anal. Theory Appl., 39 (2023), pp. 330-356

where $\lambda(W) = (\lambda_1, \lambda_2, \dots, \lambda_{C_n^m})$ is the set of eigenvalues of *W*. We also set $S_0(W) = 1$.

In fact, the matrix *W* comes from the following operator $U^{[m]}$ as in [2] and [10]. First, we note that $(u_{ij})_{n \times n}$ induces an operator *U* on \mathbb{R}^n by

$$U(e_i) = \sum_{j=1}^n u_{ij}e_j, \quad \forall 1 \le i \le n,$$

where $\{e_1, e_2, \dots, e_n\}$ is the standard basis of \mathbb{R}^n . We further extend *U* to act on the real vector space $\wedge^m \mathbb{R}^n$ by

$$U^{[m]}(e_{\alpha_1}\wedge\cdots\wedge e_{\alpha_m})=\sum_{i=1}^m e_{\alpha_1}\wedge\cdots\wedge U(e_{\alpha_i})\wedge\cdots\wedge e_{\alpha_m},$$

where $\{e_{\alpha_1} \wedge \cdots \wedge e_{\alpha_m} | 1 \leq \alpha_1 < \cdots < \alpha_m \leq n\}$ is the standard basis for $\wedge^m \mathbb{R}^n$. Then *W* is the matrix of $U^{[m]}$ under this standard basis. It is convenient to denote the multi-index by $\bar{\alpha} = (\alpha_1 \cdots \alpha_m)$. We only consider the admissible multi-index, that is, $1 \leq \alpha_1 < \alpha_2 \cdots < \alpha_m \leq n$. By the dictionary arrangement, we can arrange all admissible multi-indexes from 1 to C_n^m and use $N_{\bar{\alpha}}$ denote the order number of the multi-index $\bar{\alpha} = (\alpha_1 \cdots \alpha_m)$, i.e., $N_{\bar{\alpha}} = 1$ for $\bar{\alpha} = (12 \cdots m), \cdots$. We also use $\bar{\alpha}$ denote the index set $\{\alpha_1, \cdots, \alpha_m\}$. It is not hard to see that

$$W_{N_{\bar{\alpha}}N_{\bar{\alpha}}} = w_{\bar{\alpha}\bar{\alpha}} = \sum_{i=1}^{m} u_{\alpha_i\alpha_i}, \qquad (1.3a)$$

$$W_{N_{\bar{\alpha}}N_{\bar{\beta}}} = w_{\bar{\alpha}\bar{\beta}} = (-1)^{|i-j|} u_{\alpha_i\beta_j}, \tag{1.3b}$$

when the index set $\{\alpha_1, \dots, \alpha_m\} \setminus \{\alpha_i\}$ equals to the index set $\{\beta_1, \dots, \beta_m\} \setminus \{\beta_j\}$ but $\alpha_i \neq \beta_j$; and also

$$W_{N_{\bar{\alpha}}N_{\bar{\beta}}} = w_{\bar{\alpha}\bar{\beta}} = 0, \tag{1.4}$$

when the index sets $\{\alpha_1, \dots, \alpha_m\}$ and $\{\beta_1, \dots, \beta_m\}$ have more than one different element. It follows that *W* is symmetrical and diagonal with $(u_{ij})_{n \times n}$ diagonal. The eigenvalues of *W* are the *m*-sums of eigenvalues of $(u_{ij})_{n \times n}$.

Define the Gårding's cone in \mathbb{R}^n by

$$\Gamma_k = \{\mu \in \mathbb{R}^n | S_i(\mu) > 0, \forall 1 \le i \le k\}, \quad 1 \le k \le n.$$

For $\mu \in \mathbb{R}^n$, we let

$$\Psi = \Psi(\mu) = \{\mu_{i_1} + \dots + \mu_{i_m} | 1 \le i_1 < \dots < i_m \le n\} \in \mathbb{R}^{\mathbb{C}_m^m}.$$

Then we define the generalized Gårding's cone as follows,

$$\Gamma_k^{(m)} = \{ \mu \in \mathbb{R}^n | S_i(\Psi) > 0, \ \forall 1 \le i \le k \}, \quad 1 \le m \le n, \quad 1 \le k \le C_n^m.$$
(1.5)