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Abstract. In this paper, we establish global C2 estimates to the Neumann problem for
a class of fully nonlinear elliptic equations. As an application, we prove the existence
and uniqueness of k-admissible solutions to the Neumann problems.
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1 Introduction

Let Ω ⊂ Rn (n ≥ 3) be a bounded domain and ν(x) be the outer unit normal at x ∈ ∂Ω.
Suppose f ∈ C2(Ω) is a positive function and a, b ∈ C3(∂Ω) with a > 0. In this paper, we
consider the Neumann problem of the fully nonlinear equation{

Sk(W) = f (x), Ω,
uν = −a(x)u + b(x), ∂Ω,

(1.1)

where the matrix W = (wα1···αm,β1···βm)Cm
n ×Cm

n
with the elements as follows, for 1 ≤ m ≤

n− 1,

wα1···αm,β1···βm =
n

∑
γ=1

m

∑
i=1

uγαi δ
α1···αi−1γαi+1···αm
β1···βi−1βi βi+1···βm

, (1.2)

a linear combination of uij, where uij = ∂2u
∂xi∂xj

and δ
α1···αi−1γαi+1···αm
β1···βi−1βi βi+1···βm

is the generalized
Kronecker symbol. All indexes α1, β1, · · · come from 1 to n. For each 1 ≤ k ≤ Cm

n , we
define

Sk(W) = Sk
(
λ(W)

)
= ∑

1≤i1<i2<···<ik≤Cm
n

λi1 λi2 · · · λik ,
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where λ(W) = (λ1, λ2, · · · , λCm
n
) is the set of eigenvalues of W. We also set S0(W) = 1.

In fact, the matrix W comes from the following operator U[m] as in [2] and [10]. First,
we note that (uij)n×n induces an operator U on Rn by

U(ei) =
n

∑
j=1

uijej, ∀1 ≤ i ≤ n,

where {e1, e2, · · · , en} is the standard basis of Rn. We further extend U to act on the real
vector space ∧mRn by

U[m](eα1 ∧ · · · ∧ eαm) =
m

∑
i=1

eα1 ∧ · · · ∧U(eαi) ∧ · · · ∧ eαm ,

where {eα1 ∧ · · · ∧ eαm |1 ≤ α1 < · · · < αm ≤ n} is the standard basis for ∧mRn. Then W is
the matrix of U[m] under this standard basis. It is convenient to denote the multi-index by
ᾱ = (α1 · · · αm). We only consider the admissible multi-index, that is, 1 ≤ α1 < α2 · · · <
αm ≤ n. By the dictionary arrangement, we can arrange all admissible multi-indexes
from 1 to Cm

n and use Nᾱ denote the order number of the multi-index ᾱ = (α1 · · · αm), i.e.,
Nᾱ = 1 for ᾱ = (12 · · ·m), · · · . We also use ᾱ denote the index set {α1, · · · , αm}. It is not
hard to see that

WNᾱ Nᾱ = wᾱᾱ =
m

∑
i=1

uαiαi , (1.3a)

WNᾱ Nβ̄
= wᾱβ̄ = (−1)|i−j|uαi β j , (1.3b)

when the index set {α1, · · · , αm} \ {αi} equals to the index set {β1, · · · , βm} \ {β j} but
αi 6= β j; and also

WNᾱ Nβ̄
= wᾱβ̄ = 0, (1.4)

when the index sets {α1, · · · , αm} and {β1, · · · , βm} have more than one different ele-
ment. It follows that W is symmetrical and diagonal with (uij)n×n diagonal. The eigen-
values of W are the m-sums of eigenvalues of (uij)n×n.

Define the Gårding’s cone in Rn by

Γk = {µ ∈ Rn|Si(µ) > 0, ∀1 ≤ i ≤ k}, 1 ≤ k ≤ n.

For µ ∈ Rn, we let

Ψ = Ψ(µ) = {µi1 + · · ·+ µim |1 ≤ i1 < · · · < im ≤ n} ∈ RCm
n .

Then we define the generalized Gårding’s cone as follows,

Γ(m)
k = {µ ∈ Rn|Si(Ψ) > 0, ∀1 ≤ i ≤ k}, 1 ≤ m ≤ n, 1 ≤ k ≤ Cm

n . (1.5)


