Standing Waves of Fractional Schrödinger Equations with Potentials and General Nonlinearities

Zaizheng Li^{1,2}, Qidi Zhang^{3,*} and Zhitao Zhang^{4,5,6}

¹ School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China

² Hebei Center for Applied Mathematics, Shijiazhuang, Hebei 050024, China

³ Department of Mathematics, The University of Hong Kong, Hong Kong, China

⁴ School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China

⁵ HLM, Academy of Mathematics and Systems Science, the Chinese Academy of Sciences, Beijing 100190, China

⁶ School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received 18 April 2022; Accepted (in revised version) 4 September 2023

Abstract. We study the existence of standing waves of fractional Schrödinger equations with a potential term and a general nonlinear term:

$$\mathbf{i}u_t - (-\Delta)^s u - V(x)u + f(u) = 0, \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R}^N,$$

where $s \in (0,1)$, N > 2s is an integer and $V(x) \le 0$ is radial. More precisely, we investigate the minimizing problem with L^2 -constraint:

$$E(\alpha) = \inf\left\{\frac{1}{2}\int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}}u|^2 + V(x)|u|^2 - 2F(|u|)\right| u \in H^s(\mathbb{R}^N), \ \|u\|_{L^2(\mathbb{R}^N)}^2 = \alpha\right\}.$$

Under general assumptions on the nonlinearity term f(u) and the potential term V(x), we prove that there exists a constant $\alpha_0 \ge 0$ such that $E(\alpha)$ can be achieved for all $\alpha > \alpha_0$, and there is no global minimizer with respect to $E(\alpha)$ for all $0 < \alpha < \alpha_0$. Moreover, we propose some criteria determining $\alpha_0 = 0$ or $\alpha_0 > 0$.

Key Words: Fractional Schrödinger equation, standing wave, normalized solution.

AMS Subject Classifications: 35R11, 35A01, 35A15

*Corresponding author. *Email addresses:* zaizhengli@hebtu.edu.cn (Z. Li), qdz@amss.ac.cn (Q. Zhang), zzt@math.ac.cn (Z. Zhang)

http://www.global-sci.org/ata/

©2023 Global-Science Press

1 Introduction and main results

In this paper, we study standing waves of fractional Schrödinger equations with the potential term and general nonlinearity:

$$iu_t - (-\Delta)^s u - V(x)u + f(u) = 0, \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R}^N,$$
(1.1)

where $s \in (0,1)$, N > 2s is an integer and the $(-\Delta)^s$ is the fractional Laplacian of the following form:

$$(-\Delta)^{s}u(x) = C_{N,s}P.V.\int_{\mathbb{R}^{N}} \frac{u(x) - u(y)}{|x - y|^{N+2s}} dy,$$

where *P.V.* means the Cauchy Principle value on the integral and $C_{N,s}$ is some positive normalization constant, see [7, 14] for details. If *u* is a standing wave, i.e., $u(t, x) = e^{i\mu t}w(x)$, then $w \in H^s(\mathbb{R}^N)$ and $\mu \in \mathbb{R}$ satisfy the following equation:

$$(-\Delta)^s w + V(x)w - f(w) = -\mu w, \quad x \in \mathbb{R}^N.$$
(1.2)

We are interested in looking for solutions (w, μ) under the restriction $||w||_{L^2(\mathbb{R}^N)}^2 = \alpha$.

The fractional nonlinear Schrödinger equation is first discovered by N. Laskin (see [26, 27]) as an extension of Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. For $\inf_{\mathbb{R}^N} V(x) > 0$, there has been a lot of results involving the existence of the ground states and bound states for $(-\Delta)^s u + V(x)u = f(x, u)$ in \mathbb{R}^N by variational methods, see [2, 4, 19, 21, 34] and the references therein. We note that [2,4,19,21,34] do not consider normalized solutions. When $V(x) \equiv 1$, the uniqueness of radial solutions for $(-\Delta)^s u + u = u^{\alpha+1}$ is obtained by [17, 18]. When V(x) is periodic, the existence of ground state solutions is investigated in [1,23,32,39]. For the case V(x) is allowed to be sign-changing, existence and multiplicity results of nontrivial solutions are given by [5,13,25].

As for normalized solutions, Cheng [9] requires V(x) to be coercive besides V(x) > 1. Du-Tian-Wang-Zhang [16] assume that $0 \le V(x) \in L^{\infty}_{loc}(\mathbb{R}^N)$ is coercive and $\inf_{\mathbb{R}^N} V(x) = 0$. Guo-Huang [20] investigate the normalized solutions of (1.1) in the case $V(x) \equiv 0$ and f = f(x, u). Even though the f(x, u) seems more general than f(u) - V(x)u, they are quite different by the specific assumptions on f. Luo-Zhang [28] study the normalized solutions to

$$(-\Delta)^{s}u = \lambda u + \mu |u|^{q-2}u + |u|^{p-2}u.$$

Ikoma-Miyamoto [22] discuss the existence of standing waves of (1.1) with s = 1. In this paper, we discuss a totally different case $V(x) \le 0$ is radial.

We focus on the existence of standing waves for (1.1). Namely, solutions of (1.1 of the special form $u(t, x) = e^{i\mu t}w(x)$, where $\mu \in \mathbb{R}$ and $w \in H^s(\mathbb{R}^N)$, where $H^s(\mathbb{R}^N)$ is the fractional Sobolev space (see [7,14]). Throughout the paper, denote

$$[u,v]_{H^{s}(\mathbb{R}^{N})} := \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(u(x) - u(y))(\bar{v}(x) - \bar{v}(y))}{|x - y|^{N+2s}} dx dy, \quad [u]_{H^{s}(\mathbb{R}^{N})} := [u,u]_{H^{s}(\mathbb{R}^{N})}^{\frac{1}{2}}.$$