A Remark on Weighted (*L^p*,*L^r*)-Boundedness for Rough Multilinear Oscillatory Singular Integrals

Weijin Yan*

School of Mathematical Sciences, Xiamen University, Xiamen 361005, China.

Received September 8, 2022; Accepted May 29, 2023; Published online December 26, 2023.

Abstract. This paper studies the weighted (L^p, L^r) -boundedness for a class of multilinear oscillatory singular operators with real-valued polynomial phases and rough homogeneous kernels belonging to $L\log^+ L(S^{n-1})$, and establishes two criteria on the corresponding weighted bounds for such operators.

AMS subject classifications: 42B20, 42B35

Key words: Multilinear oscillatory singular integrals, rough kernel, BLO function, weight.

1 Introduction

Let us consider the following multilinear oscillatory singular integral operator T^{A_1,A_2} defined by

$$T^{A_1,A_2}f(x) = \text{p.v.} \int_{\mathbb{R}^n} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^2 R_{m_j}(A_j;x,y) f(y) dy,$$

and the corresponding truncated operator without phase S^{A_1,A_2} defined by

$$S^{A_1,A_2}f(x) = \text{p.v.} \int_{|x-y|<1} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^2 R_{m_j}(A_j;x,y) f(y) dy,$$

where P(x,y) is a real-valued polynomial on $\mathbb{R}^n \times \mathbb{R}^n$, $m_1, m_2 \in \mathbb{N}$, $M = m_1 + m_2$, $R_{m_j}(A_j; x, y)$ denotes the m_j -th remainder of the Taylor series of A_j at x about y, more precisely,

$$R_{m_j}(A_j;x,y) = A_j(x) - \sum_{|\gamma| < m_j} \frac{1}{\gamma!} D^{\gamma} A_j(y) (x-y)^{\gamma}, \quad j = 1,2.$$

^{*}Corresponding author. *Email address:* weijinyan0408@163.com (Yan W)

Operator of this type has been studied in several works. In 1998, Chen, Hu and Lu [1] studied the case for $\Omega \in L^q(S^{n-1})$ $(1 < q \le \infty)$ and A_1 has derivatives of order m_1-1 in BMO(\mathbb{R}^n), A_2 has derivatives of order m_2 in $L^{r_0}(\mathbb{R}^n)(1 < r_0 \le \infty)$, and showed that if P(x,y) is a non-degenerate real valued polynomials, then T^{A_1,A_2} is bounded from $L^p(\mathbb{R}^n)$ to $L^r(\mathbb{R}^n)$ if and only if S^{A_1,A_2} is bounded from $L^p(\mathbb{R}^n)$ to $L^r(\mathbb{R}^n)$, where $1/r=1/p+1/r_0$. Subsequently, [8] and [9] studied the special cases of [1] and given the weighted results, respectively. We [19] recently obtained the weighted version of [1]. In addition, Lu and Yan [15] extended the results of [1] to the case $\Omega \in L\log^+ L(S^{n-1})$, by assuming that A_1 is a radial function and has derivatives of order m_1-1 in BLO(\mathbb{R}^n). In this paper, we will extend the results in [15] to weighted cases.

Before formulating our main results, we first recall some relevant definitions.

Definition 1.1 ([7]). (i) Suppose that $\omega(r) \ge 0$ and $\omega \in L_{loc}(\mathbb{R}_+)$. For $1 , we say <math>\omega \in A_p(\mathbb{R}_+)$, if there is a C > 0 such that for any $I \subset \mathbb{R}_+$,

$$\left(\frac{1}{|I|}\int_{I}\omega(r)dr\right)\left(\frac{1}{|I|}\int_{I}\omega(r)^{-1/(p-1)}dr\right)^{p-1}\leq C<\infty.$$

Moreover, if there is a C > 0 such that

$$\omega^*(r) \leq C\omega(r)$$
 a.e. $r \in \mathbb{R}_+$.

then we say $\omega \in A_1(\mathbb{R}_+)$, where ω^* denotes the Hardy-Littlewood maximal function of ω defined by

$$\omega^*(t) = \sup_{t \in I \subset \mathbb{R}_+} \frac{1}{|I|} \int_I \omega(r) dr$$

(ii) For 1 , we denote

$$\widetilde{A}_p(\mathbb{R}_+) = \{ \omega : \omega \ge 0, \omega \in L_{\text{loc}}(\mathbb{R}_+) \text{ and } \omega^2 \in A_p(\mathbb{R}_+) \}.$$

Definition 1.2 ([15]). Let $b(r) \in L_{loc}(\mathbb{R}_+)$. We say $b(r) \in BMO(\mathbb{R}_+)$, if

$$\|b\|_{\text{BMO},+} = \sup_{I \subset \mathbb{R}_+} \frac{1}{|I|} \int_{I} |b(r) - b_I| dr < \infty,$$

where $b_I = |I|^{-1} \int_I b(r) dr$ and I is an interval in \mathbb{R}_+ .

Definition 1.3 ([5]). A locally integrable function a(x) will be said to belong to $BLO(\mathbb{R}^n)$ if there is a constant C such that for any cube Q

$$m_Q(a) - \inf_{x \in Q} a(x) \le C,$$

where $m_Q(a) = |Q|^{-1} \int_Q a(x) dx$. If $a \in BLO(\mathbb{R}^n)$, then we denote

$$||a||_{\mathrm{BLO}} = \sup_{Q} \{m_Q(a) - \inf_{x \in Q} a(x)\}.$$