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Abstract

Stability and global error bounds are studied for a class of stepsize-dependent linear

multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields

in Banach space. To break through the order barrier p ≤ 1 of unconditionally contractive

linear multistep methods for dissipative systems, strongly dissipative systems are intro-

duced. By employing the error growth function of the methods, new contractivity and

convergence results of stepsize-dependent linear multistep methods on infinite integration

intervals are provided for strictly dissipative systems (ω < 0) and strongly dissipative sys-

tems. Some applications of the main results to several linear multistep methods, including

the trapezoidal rule, are supplied. The theoretical results are also illustrated by a set of

numerical experiments.
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1. Introduction

In this paper, we are concerned with the time discretization of the nonlinear evolution

equations

u′(t) = A
(
t, u(t)

)
, t ∈ IT = [0, T ]; u(0) = u0, (1.1)

where T > 0 is a constant, u : IT → X , u0 ∈ X and the nonlinear map A is ω-dissipative

in Banach space X . Such type of equations is found in a wide range of applications and

typical examples of nonlinear map A are the porous medium vector field ∆(|u|α−1u) and the

α-Laplacian∇·(|∇u|α−2∇u) (for more examples, see Section 2 and [4,5,13,23,31,34,38]). Much

work has been devoted to time discretizations of nonlinear evolution equations, especially, in

a finite-dimensional space or in a real-valued infinite-dimensional Hilbert space; see, e.g., [1–3,

14,15,19–21,28,29,43]. In Banach space, the studies of time discretizations have predominantly

considered the backward Euler method; see, e.g., [8–10, 17, 22, 26, 31, 37]. This arises partly

because the convergence of this type of discretization approximations can be used to show the

existence of the solutions to the nonlinear evolution equations (see, e.g., [5, 6, 8, 12]). Perhaps

the most reason is a well-known fact that unconditionally contractive methods in Banach space

are subject to an order barrier p ≤ 1; see, e.g., [42]. To obtain high order contractive methods
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in Banach space, circle condition was introduced and conditional contractivity was considered;

see, e.g., [25, 35, 42, 48].

On the one hand, only first order linear multistep methods and Runge-Kutta methods are

unconditionally contractive for dissipative systems in Banach space. On the other hand, there

exist some second order linear multistep methods which are unconditionally contractive for

dissipative systems in Hilbert space. The question arises whether there is a reasonable problem

class between the above two classes of problems such that some second order linear multistep

methods are unconditionally contractive for this class of problem. A natural approach would

be to impose a restrictive condition on dissipative systems in Banach space. To this end, we

introduce a quasi-reversible condition such that the problems class considered is a subset of

nonlinear ω-dissipative systems in Banach space. Of particular interest in this condition is that

it naturally holds for nonlinear dissipative systems in Hilbert space. Alternatively, the class of

the dissipative problems in Hilbert space is a subset of the problem class considered here.

We note that high order linear multistep methods and Runge-Kutta methods for nonlinear

parabolic problems in Banach space have been dealt with by linearization in [32] and [33], re-

spectively, under the assumption that the linearization of the vector field is a sectorial map.

Using the theory of logarithmic Lipschitz constants, by approximating the nonlinear semigroup

etA(u0), the convergence of strongly A-stable linear multistep methods for strictly dissipative

differential systems, i.e., ω < 0, was obtained in Hilbert space [21]. Here we will explore a dif-

ferent approach and generalize the classical B-theory [14, 16, 19, 28] for numerical methods for

ordinary differential equations (ODEs) to linear multistep approximations of evolution equa-

tions in Banach space. This is done by extending the error growth function introduced by

Burrage and Butcher [7] for implicit Runge-Kutta methods; see, also, [18, 19]. By computing

the error growth function, the stability and the convergence of stepsize-dependent linear mul-

tistep (SDLM) methods for ω-dissipative systems are established. The strict-contractivity and

the long time convergence of a class of SDLM methods on semi-infinite intervals for strictly or

strongly dissipative differential systems will be also obtained.

The paper is organized as follows. We start in Section 2 by introducing some definitions and

notations relative to the ω-dissipative problems. In Section 3, SDLM methods are proposed to

solve the nonlinear evolution equations (1.1). In this section the existence and uniqueness of

the solution to the discrete systems is provided. Section 4 is devoted to stability analysis of

SDLM methods for this class of equations. The global error bounds are derived in Section 5.

Especially, the long-time error bounds are obtained for a class of SDLM methods for strictly or

strongly dissipative systems in this section. Some applications of the main results are postponed

to Section 6. A numerical study is carried out for a test case in Section 7. Section 8 contains

a few concluding remarks.

2. ω-dissipative Systems in Banach Space

Let X be a real-valued Banach space equipped with the norm ‖ · ‖ and D be some subset

of X . We assume that the nonlinear operator A : IT × D → X in (1.1) is an ω-dissipative

operator [27, 44], whose definition is given by the following.

Definition 2.1 ([27, 44]). An operator A is said to be dissipative if, for any t ∈ IT ,

‖u− v‖ ≤ ‖u− v − τ [A(t, u) −A(t, v)]‖, τ > 0, u, v ∈ D,


