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Abstract

In this work, we focus on the conforming and nonconforming leap-frog virtual element

methods for the generalized nonlinear Schrödinger equation, and establish their uncondi-

tional stability and optimal error estimates. By constructing a time-discrete system, the

error between the solutions of the continuous model and the numerical scheme is separated

into the temporal error and the spatial error, which makes the spatial error τ -independent.

The inverse inequalities in the existing conforming and new constructed nonconforming

virtual element spaces are utilized to derive the L∞-norm uniform boundedness of numer-

ical solutions without any restrictions on time-space step ratio, and then unconditionally

optimal error estimates of the numerical schemes are obtained naturally. What needs to

be emphasized is that if we use the pre-existing nonconforming virtual elements, there is

no way to derive the L∞-norm uniform boundedness of the functions in the nonconform-

ing virtual element spaces so as to be hard to get the corresponding inverse inequalities.

Finally, several numerical examples are reported to confirm our theoretical results.
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1. Introduction

Consider a generalized nonlinear Schrödinger (GNLS) system

iut +∆u+ ψf(|u|)u+ l(|u|)u = 0, (x, t) ∈ Ω× (0, T ], (1.1)

κ1ψ − κ22∆ψ = f(|u|)|u|2, (x, t) ∈ Ω× (0, T ], (1.2)

u(x, t) = 0, ψ(x, t) = 0, (x, t) ∈ ∂Ω×(0, T ], (1.3)

u(x, 0) = u0(x), x ∈ Ω, (1.4)

where i2 = −1, κ1 ≥ 0 and κ2 are real constants satisfying κ1 + κ2 6= 0, and u0, f and l are two

given real-valued continuous functions.
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The system (1.1)-(1.4) under different parameters indeed reduces to many classical models.

For instance, the system is indeed a class of nonlinear Schrödinger equations with different

nonlinear terms when κ2 = 0 [4, 49, 51]. If κ1 = 0, l(|u|) = 0 and κ2 6= 0, the system reduces

to the Schrödinger-Poisson model [36, 47, 48]. When κ1 = 0, κ2 6= 0 and f(|u|) is a constant,

the system is called the Schrödinger-Poisson-Slater model [28, 65]. In addition, if l(|u|) = 0,

the model (1.1)-(1.4) is degraded to the Schödinger-Helmholtz system [24, 33]. The system

(1.1)-(1.4) could be used to describe many physical phenomena in the field of quantum optics,

quantum mechanics, and plasma physics, which motivates scholars to study the model along the

mathematical and numerical points. On the mathematical level, Leo and Rial [36] studied the

well-posedness of the Cauchy problem for the Schrödinger-Poisson equation. Bao et al. [10] ob-

tained the formal derivation, existence and uniqueness analysis of the Schrödinger-Poisson-Xα

model with/without an external potential. Trabelsi [57] studied the existence and uniqueness

global in time of solutions of the coupled higher-order Schrödinger-Poisson-Slater equations

with a self-consistent Coulomb potential. In [35], the existence and stability of standing waves

for the Schrödinger-Poisson-Slater equation were considered. More detailed mathematical anal-

ysis for different Schrödinger-type models can be found in [16, 24, 48, 55]. On the numerical

level, Liao et al. [45] studied a fourth-order compact difference scheme two-dimensional linear

Schrödinger equations with periodic boundary conditions. Zhang [64] considered the compact

finite difference methods for the Schrödinger-Poisson equation in a bounded domain and estab-

lished their optimal error estimates under proper regularity assumptions on wave function and

external potential. Akrivis et al. [3] studied the fully discrete Galerkin finite element methods

(FEMs) of second-order temporal accuracy for the nonlinear Schrödinger equation. In [33],

a Crank-Nicolson FEM for a class of nonlinear Schrödinger-Helmholtz system was constructed,

and unconditional stability and convergence of the proposed scheme were studied by using

time-space error splitting technique. Some other numerical methods have been applied for the

GNLS system, such as finite difference methods [45,59], spectral methods [10,27], discontinuous

Galerkin method [34, 46], virtual element methods (VEMs) [44], and so on.

VEM, regarded as an extension of FEM, different from polygonal FEM [54], composite

FEM [31] and extended/generalized FEM [29], possesses great flexibility in utilizing meshes with

almost arbitrary polygons and polyhedrons [11]. As the basic principle of the VEM introduced

in the pioneering works [11,20], virtual element space comprises polynomial and non-polynomial

functions, and the numerical schemes dispense with any explicit construction of the discrete

shape functions. In order to calculate the corresponding stiffness matrix without actually

calculating the non-polynomial function, degrees of freedom should be selected attentively.

VEM only requires the information of a polynomial subspace of the local discrete function

space to offer stability and accuracy, as the result that more general shaped elements can

be used and explicit evaluation of the shape functions is avoided. Recently, various VEMs

have been widely used in various physical models, such as elliptic problem [7, 21], elasticity

problem [12, 63], Stokes/Navier-Stokes models [5, 14, 15, 66], Cahn-Hilliard equation [6], 2m-th

order partial differential equations [26], reaction-subdiffusion equations [42, 43], and so on.

However, we have not found the VEM and FEM for the system (1.1)-(1.4) that is the initial

research motivation of this work. We emphasize that FEM and VEM are good choices for the

system (1.1)-(1.4) because they allow us to work in very low regularity regimes that cannot be

handled with FDMs or spectral methods.

Most recently, we studied the conforming and nonconforming VEMs for the two dimensional

nonlinear Schrödinger equations [44]. This work tried to derive the optimal rate of convergence


