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Abstract

In this paper, we consider the Cahn-Hilliard-Hele-Shaw (CHHS) system with the dy-

namic boundary conditions, in which both the bulk and surface energy parts play important

roles. The scalar auxiliary variable approach is introduced for the physical system; the mass

conservation and energy dissipation is proved for the CHHS system. Subsequently, a fully

discrete SAV finite element scheme is proposed, with the mass conservation and energy

dissipation laws established at a theoretical level. In addition, the convergence analysis

and error estimate is provided for the proposed SAV numerical scheme.
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1. Introduction

The Cahn-Hilliard-Hele-Shaw system (CHHS) has attracted more and more attentions in

recent years, since this model describes two phase flows in a simple way. This system turns out to

be the basic diffusion interface model for incompressible binary fluids confined in a Hele-Shaw

cell [42, 43, 50], and it has been proposed to simplify the well-known Cahn-Hilliard-Navier-

Stokes model, where the Navier-Stokes system is coupled with the convective Cahn-Hilliard

equation [19, 38, 39, 59]. This model has also been used to describe spinodal decomposition of

a binary fluid in a Hele-Shaw cell [33], tumor growth and cell sorting [25, 64], and two phase

flows in porous media [17], etc.

The CHHS system with Neumann boundary conditions has been extensively studied in

the existing literature [8, 9, 12, 31, 33, 49, 63]. On the other hand, the homogeneous Neumann

boundary condition turns out to unsatisfactory in some cases, due to the fact that this simple

boundary condition set-up ignores the effects of certain process on the boundary to the bulk

dynamics; in other words, separate chemical reactions on the boundary are not taken into

consideration. Nevertheless, in certain applications such as fluid dynamics and contact line

problems, a more accurate description of the short-range interaction of the binary mixture with
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the solid wall of the vessel turns out to be necessary. At present, various dynamic boundary

conditions have been derived and analyzed for the Cahn-Hilliard equation [5, 40, 41, 52], while

the associated analysis for the CHHS system is very limited.

Let Ω ⊂ R
d (where d = 2, 3) be a bounded domain with a boundary Γ := ∂Ω. The unit outer

normal vector on Γ will be denoted by n = n(x). The standard CHHS system is formulated as

∂φ

∂t
+∇ · (φu) − ǫ∆µ = 0 in Ω× (0, T ], (1.1)

µ+ ǫ∆φ− f(φ) = 0 in Ω× (0, T ], (1.2)

u+∇p+ γφ∇µ = 0 in Ω× (0, T ], (1.3)

∇ · u = 0 in Ω× (0, T ], (1.4)

where γ > 0 is a dimensionless surface tension parameter, u is the advective velocity, and p is

the pressure. To describe a mixture of two materials, the phase field variable φ stands for the

difference of two local relative concentrations. In more details, φ(x) (x ∈ Ω) takes the distinct

values, 1 and -1, in the respective pure phases of the materials, while {x ∈ Ω : −1 < φ(x) < 1}

matches with the diffuse interface between them, whose thickness is proportional to the very

small positive constant ǫ. The variable µ stands for the chemical potential in the bulk, which

can be derived from the Fréchet derivative [16] of the following Ginzburg-Landau free energy

Ebulk[φ] =

∫

Ω

( ǫ
2

∣∣∇φ
∣∣2 + F (φ)

)
dx,

where the functional F denotes the bulk potential and f(φ) = F ′(φ). Typically, F has a double

well form, which reaches its global minima at φ = ±1 and a local maximum at φ = 0.

The homogeneous Neumann boundary conditions corresponding to the system (1.1)-(1.4)

are given by

∂nφ = 0 on Γ× (0, T ], (1.5)

∂nµ = 0 on Γ× (0, T ], (1.6)

u · n = 0 on Γ× (0, T ]. (1.7)

However, especially for certain materials in the bounded region, boundary condition (1.5) is

not well-pleasing, since certain additional effects of the boundary to the bulk dynamics are

ignored. Meanwhile, several dynamic boundary conditions have been proposed in the existing

literatures [18, 46, 47, 53, 65], to replace the homogeneous Neumann condition. In order to

improve this phenomenon and to better describe the whole system, physicists put forward

a surface free energy

Esurf [φΓ] =

∫

Γ

(κǫ
2

∣∣∇ΓφΓ
∣∣2 +G(φΓ)

)
dS,

where ∇Γ denotes the surface gradient operator on Γ and G is a surface potential. Furthermore,

κ > 0 is related to the effects of surface diffusion. Some numerical works [2, 3, 52] have been

reported as well.

The total free energy corresponding to the dynamic boundary conditions becomes

E = Ebulk[φ] + Esurf [φΓ]. (1.8)


