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Abstract

In this paper, a multirate time iterative scheme with multiphysics finite element method

is proposed and analyzed for the nonlinear poroelasticity model. The original problem is

reformulated into a generalized nonlinear Stokes problem coupled with a diffusion problem

of a pseudo pressure field by a new multiphysics approach. A multiphysics finite element

method is adopted for the spatial discretization, and the generalized nonlinear Stokes

problem is solved in a coarse time step and the diffusion problem is solved in a finer

time step. The proposed algorithm is a decoupled algorithm, which is easily implemented

in computation and reduces greatly computation cost. The stability analysis and the

convergence analysis for the multirate iterative scheme with multiphysics finite element

method are given. Some numerical tests are shown to demonstrate and validate the analysis

results.
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1. Introduction

Poromechanic is a fluid-solid interaction system at pore scale, which is a branch of contin-

uum mechanics and acoustics that studies the behavior of fluid-saturated porous materials. If

the solid is an elastic material, then the subject of the study is known as poroelasticity, one

can go back to the works of Biot [2, 3], Terzhagi [29] and Coussy [16] for details. The field

of poroelasticity is of increasing importance today in science and engineering fields, such as

materials science, agricultural science, environmental engineering, petroleum engineering and

bio-mechanical engineering and so on [8,12,22]. Moreover, the elastic material may be governed

by linear or nonlinear constitutive law, which then leads respectively to linear and nonlinear

poroelasticity. In the numerical computing, a big challenge is that there may exists numerical

oscillation for pore pressure, which is referred as locking phenomenon [27]. For linear poroelas-

ticity model, a vast number of numerical methods have been developed in recent years, such

as finite element methods (FEMS), discontinuous Galerkin (DG) methods, hybrid high-order

methods, and weak Galerkin methods, one can see [4, 13, 14, 24, 25] and the references therein
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for details. In this paper, we are focus on the numerical approximation for the nonlinear poroe-

lasticity model. Compared with the linear poroelasticiy model, as the nonlinear term brings

a lot of troubles in analysis and numerical tests, there exists few numerical methods for the

nonlinear poroelasticity model. In [9], the finite element method is used to solve the nonlinear

problem. In [31], the authors proposed and analyzed the H(div)-conforming finite element meth-

ods for a nonlinear poroelasticity model. In [19], the constraint energy minimizing generalized

multiscale finite element method (CEM-GMsFEM) is used to solve a nonlinear poroelasticity

problem. In [30], discontinuous Galerkin method is used to solve the quasi-static nonlinear

Biot’s model. In [5], a hybrid high-order method is proposed to solve a nonlinear elasticity

problem. Some other numerical methods for nonlinear poroelasticity model can also be found

in [10, 11]. In this paper, to overcome the locking phenomenon of displacement variable and

pressure oscillation, we reformulate the original problem to a new coupling system which con-

sists a generalized nonlinear Stokes problem of displacement vector field with a pseudo pressure

and a diffusion problem of other pseudo pressure fields. At the same time, based on the idea

of [21] (the authors propose a multirate time iterative scheme based on multiphysics discontin-

uous Galerkin for a linear poroelsticity model), we make full use of this characteristics that the

displacement vector field changes slowly with time while the diffusion problem changes rapidly

with time to design a multirate time iterative scheme based on multiphysics finite element

method to solve the nonlinear poroelasticity problem – a multiphysics finite element method

for the spatial discretization, the generalized nonlinear Stokes problem solved in a coarse time

step and the diffusion problem in a finer time step. Then, we give the stability analysis and the

convergence analysis for the multirate iterative scheme. The proposed algorithm is a decoupled

algorithm, which is easily implemented in computation and reduce greatly computation cost.

To the best of our knowledge, it is the first time to propose and analyze a multirate iterative

scheme with multiphysics finite element method for the nonlinear poroelasticity model.

The remainder of this paper is organized as follows. In Section 2, we will give the mul-

tiphysics reformulation of the nonlinear poroelasticity model. In Section 3, we first give the

multirate iterative scheme for the reformed poroelasticity model and then convergence analysis

is performed for the multirate iterative scheme. In Section 4, we show some numerical examples

to verify that the multirate iterative scheme not only greatly reduces the computational cost,

but also has no numerical oscillation. Finally, we draw a conclusion to summarize the main

results of this paper.

2. Nonlinear Poroelasticity Model and Multiphysics Reformulation

In this paper, we consider the following quasi-static nonlinear poroelasticity model (cf. [16,

17, 26]):

−divσ(u) + α∆p = f in ΩT := Ω× (0, T ) ⊂ Rd × (0, T ), (2.1)

(c0p+ αdivu)t + divvf = φ in ΩT , (2.2)

where

vf := −K

µf

(∆p− ρfg). (2.3)

Here Ω is a bounded polygonal domain in Rd (d = 2, 3) and ∂Ω is its boundary. u is the

displacement vector of the solid, p is the pressure of the solvent, f is the body force and I


