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Abstract. We present a second-order strictly length-preserving and unconditionally
energy-stable rotational discrete gradient (Rdg) scheme for the numerical approxima-
tion of the Oseen-Frank gradient flows with anisotropic elastic energy functional. Two
essential ingredients of the Rdg method are reformulation of the length constrained
gradient flow into an unconstrained rotational form and discrete gradient discretiza-
tion for the energy variation. Besides the well-known mean-value and Gonzalez dis-
crete gradients, we propose a novel Oseen-Frank discrete gradient, specifically de-
signed for the solution of Oseen-Frank gradient flow. We prove that the proposed
Oseen-Frank discrete gradient satisfies the energy difference relation, thus the resul-
tant Rdg scheme is energy stable. Numerical experiments demonstrate the efficiency
and accuracy of the proposed Rdg method and its capability for providing reliable
simulation results with highly disparate elastic coefficients.
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1 Introduction

The dynamics of liquid crystals involve the evolution of local anisotropy generated by
nonuniform orientational distribution. For uniaxial nematics, the equilibrium orienta-
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tional distribution is axisymmetric and is allowed to rotate freely as a whole. A simpli-
fied setting for the dynamics of uniaxial nematics is to assume that the local anisotropy
is kept at the equilibrium state and only rotations of the state is allowed. Under this
rationale, the local anisotropy is sufficiently described by a unit vector field n(x). The
well-known Ericksen-Leslie model [14, 26] couples the velocity and the unit vector field.
The evolution of the vector field is given by

n×
(

γ1
(
nt+v·∇n−Ω·n

)
+γ2τ ·n+ δF [n]

δn

)
=0, (1.1a)

|n|=1. (1.1b)

In the above, Ω= (∇v−∇v⊺)/2, and τ = (∇v+∇v⊺)/2, where v is the velocity of the
fluid governed by the Navier–Stokes equation that we do not write down here. The force
by the interaction of local anisotropy is characterized by variational derivative of the
Oseen–Frank energy [17, 31],

F [n]=
1
2

∫
Ω

k1(∇·n)2+k2|n·(∇×n)|2+k3|n×(∇×n)|2

+(k2+k4)
[
tr
(
(∇n)2)−(∇·n)2]dV. (1.2)

The first three terms can be explained as excess energy density for three typical deforma-
tions specifically for unit vector fields: splay, twist and bend [9]. Therefore, it is the three
constants k1,k2,k3 that characterize the elasticity of a certain material. They are closely
related to physical parameters, whose relative magnitudes may vary in a wide range by
previous experimental or theoretical results [3, 11, 18, 21, 23, 24, 27, 30, 35, 40–43]. The last
term can be rewritten as a surface integral, which is usually not considered as it vanishes
under periodic or some other commonly adopted boundary conditions.

When the velocity is small, one may approximate by assuming v = 0, so that the
Ericksen-Leslie model is reduced to

n×nt =−n× δF [n]
δn

, (1.3a)

|n|=1, (1.3b)

where γ1 is also eliminated with suitable rescaling. This equation can be interpreted as
a gradient flow driven by the Oseen–Frank energy with an explicit length constraint,
which we shall clarify later. Notably, it is desirable for a numerical scheme to keep the
vector length and the energy dissipation. In particular, the deviation of vector length
would bring ambiguity when explaining the results because the pictures of splay, twist
and bend terms are no longer valid for vector fields with varying lengths. However, both
the ki terms and the length constraint give rise to strong nonlinearity that is not easy to
handle.
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