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Abstract

In this paper, we offer a new sparse recovery strategy based on the generalized error

function. The introduced penalty function involves both the shape and the scale pa-

rameters, making it extremely flexible. For both constrained and unconstrained models,

the theoretical analysis results in terms of the null space property, the spherical section

property and the restricted invertibility factor are established. The practical algorithms

via both the iteratively reweighted ℓ1 and the difference of convex functions algorithms

are presented. Numerical experiments are carried out to demonstrate the benefits of the

suggested approach in a variety of circumstances. Its practical application in magnetic

resonance imaging (MRI) reconstruction is also investigated.
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1. Introduction

High dimensionality is a basic feature of big data, that is, the number of features measured

can be very large and are often considerable larger than the number of observations. To over-

come the “curse of dimensionality” and reduce the redundancy, the vector of parameters to be

estimated or the signal to be recovered is often assumed to be sparse (i.e., it has only a few

nonzero entries) either by itself or after a proper transformation. How to exploit the sparsity to

help estimating the underlying vector of parameters or recovering the unknown signal of inter-

est, namely sparse recovery, has become a core research issue and gained immense popularity

in the past decades [1].

Generally, sparse recovery aims to estimate an unknown sparse x ∈ R
N from few noisy

linear observations or measurements y = Ax + ε ∈ R
m where A ∈ R

m×N with m ≪ N is the

design or measurement matrix, and ‖ε‖2 ≤ η is the vector of noise. It arises in many scientific

research fields including high-dimensional linear regression [2] and compressed sensing [3–5].

Naturally, this sparse x can be recovered by solving a constrained ℓ0-minimization problem

min
z∈RN

‖z‖0 subject to ‖Az− y‖2 ≤ η, (1.1)

or the unconstrained ℓ0-penalized least squares problem minz∈RN
1
2‖Az−y‖22+λ‖z‖0 [6], where

λ > 0 is a tuning parameter. However, due to the nonsmoothness and nonconvexity of the ℓ0-

norm, these are combinatorial problems which are known to be related to the selection of best
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subset and are computationally NP-hard to solve [7]. Instead, a widely used solver is the

following constrained ℓ1-minimization problem (also called Basis Pursuit Denoising) [3]:

min
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ η, (1.2)

or the well-known Lasso minz∈RN
1
2‖Az−y‖22+λ‖z‖1 [8]. The ℓ1-minimization acts as a convex

relaxation of ℓ0-minimization. Although it enjoys attractive theoretical properties and has

achieved great success in practice, it is biased and suboptimal. The Lasso does not have the

oracle property [9] (means that in the asymptotic sense it performs as well as the case when the

support is known in advance), since the ℓ1-norm is just a loose approximation of the ℓ0-norm.

To remedy this problem, many nonconvex sparse recovery methods have been employed to

better approximate the ℓ0-norm and enhance sparsity. They include ℓp (0 < p < 1) [10–12],

smoothed L0 (SL0) [13], Capped-L1 [14], transformed ℓ1 (TL1) [15], smooth clipped absolute

deviation (SCAD) [9], minimax concave penalty (MCP) [16], nonconvex shrinkage methods, [17],

exponential-type penalty (ETP) [18, 19], error function (ERF) method [20], ℓ1 − ℓ2 [21, 22],

ℓrr−αℓr1 (α ∈ [0, 1], r ∈ (0, 1]) [23], ℓ1/ℓ2 [24,25], q-ratio sparsity minimization [26] and smoothed

ℓp-over-ℓq (SPOQ) [27], among others. For a more comprehensive view, please see the survey

on nonconvex regularization [28] and the references therein. And it should be pointed out

that all the nonconvex regularization methods we mentioned here are only a small part of

this field, because there are too many related studies and they are constantly developing.

These parameterized nonconvex methods result in the difficulties of theoretical analysis and

computational algorithms due to the nonconvexity of the penalty functions, but do outperform

the convex ℓ1-minimization in various scenarios. For example, it has been reported that ℓp gives

superior results for incoherent measurement matrices (i.e., matrices with small coherence such

as Gaussian random matrices), while ℓ1− ℓ2, ℓ1/ℓ2 and q-ratio sparsity minimization are better

choices for highly coherent measurement matrices (e.g., oversampled discrete cosine transform

matrices). Meanwhile, TL1 is a robust choice no matter whether the measurement matrix is

coherent or not.

The resulting nonconvex sparse recovery methods have the following general constrained

form:

min
z∈RN

Rθ(z) subject to ‖Az− y‖2 ≤ η, (1.3)

where Rθ(·) : R
N → R+ := [0,∞) denotes a nonconvex penalty or regularization function

with an approximation parameter θ (it can be a vector of parameters), or a formulation of its

corresponding unconstrained version minz∈RN
1
2‖Az−y‖22+λRθ(z) with λ > 0 being the tuning

parameter. Several nonconvex methods and their corresponding penalty functions are shown

in Table 1.1. Basically, in practice a separable and concave on R
N
+ penalty function is desired

in order to facilitate the theoretical analysis and solving algorithms.

There are a great number of theoretical recovery results for the nonconvex methods listed

above for their global or local optimal solutions (please refer to the original paper for a spe-

cific method). Moreover, some unified recovery analysis results have also been obtained for

these nonconvex sparse recovery methods. For instance, when Rθ(z) =
∑N

j=1 Fθ(|zj |) with

Fθ(·) : R+ → R+ satisfying the subadditive property, both exact and robust reconstruction con-

ditions were obtained in [29]. While, [30] established a theoretical recovery guarantee through

unified null space properties. A general theoretical framework was presented in [31] based on

regularity conditions. It shows that under appropriate conditions, the global solution of concave


