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Abstract

This paper aims to analyze the weak approximation error of a fully discrete scheme for

a class of semi-linear parabolic stochastic partial differential equations (SPDEs) driven by

additive fractional Brownian motions with the Hurst parameter H ∈ (1/2, 1). The spatial

approximation is performed by a spectral Galerkin method and the temporal discretization

by an exponential Euler method. As far as we know, the weak error analysis for approx-

imations of fractional noise driven SPDEs is absent in the literature. A key difficulty in

the analysis is caused by the lack of the associated Kolmogorov equations. In the present

work, a novel and efficient approach is presented to carry out the weak error analysis for

the approximations, which does not rely on the associated Kolmogorov equations but relies

on the Malliavin calculus. To the best of our knowledge, the rates of weak convergence,

shown to be higher than the strong convergence rates, are revealed in the fractional noise

driven SPDE setting for the first time. Numerical examples corroborate the claimed weak

orders of convergence.
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1. Introduction

As an extension of the classical Brownian motion (H = 1/2), the fractional Brownian

motion (fBm in short) with Hurst parameter H ∈ (0, 1) has rapidly become an extremely

hot topic, impacting on a wide range of application areas such as hydrology, financial markets,

telecommunications, medicine and so on (see, e.g., [10,12,16,17,19,22,23] and references therein).

It is therefore natural and meaningful to investigate some physical phenomena with randomness

modeled by fBm driven SPDEs from both theoretical and numerical points of view. In contrast

to the extensive researches for SPDEs driven by standard Q-Wiener process (see monographs

[20, 21] for numerous references), the study of the SPDEs driven by fBm is in its beginning.

Recently, there has been a fast increasing number of works on theoretical analysis of SPDEs

driven by fBm e.g., [10, 11, 15, 23, 24], however, finding reliable numerical approximations is

still an active ongoing research area. For instance, Cao, Hong and Liu [5, 6] get the optimal

strong error analysis for SPDEs with additive noise which is fractional in space and white in

time. With the Hurst parameter H ∈ (1/2, 1), the authors in [27] derive sharp mean-square

regularity results and optimal strong convergence rates for the linear implicit fully discrete
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method. Besides, an explicit method has been analyzed in [13] and the super-convergence rate

has been reached for SPDEs with spatially smooth fractional noise. As far as we know, the

corresponding weak error analysis for numerical approximations of SPDEs with fractional noise

is absent in existing literature.

In this work, we attempt to fill the gap by analyzing convergence rates of weak approxima-

tions for the following stochastic parabolic equation driven by a cylindrical fractional noise:
{

dX(t) +AX(t) dt = F (X(t)) dt+ΨdWH(t), t ∈ (0, T ],

X(0) = ξ.
(1.1)

Here, given a real separable Hilbert space (U, 〈·, ·〉, ‖ · ‖) and a probability space (Ω,F ,P), let

A : Dom(A) ⊂ U → U be a densely defined, linear unbounded, positive self-adjoint operator

with compact inverse and let F : U → U and Ψ: U → U be deterministic mappings. By

adopting the approach used in [11], we define the standard cylindrical fBm {WH(t)}t∈[0,T ] with

Hurst parameter H ∈ (1/2, 1) as the following formal series:

WH(t) :=

∞
∑

n=1

wH
n (t)en, t ∈ [0, T ], (1.2)

where {wH
n (t)}n∈N, t ∈ [0, T ] is a sequence of independent real-valued standard fBm each with

the same Hurst parameter H ∈ (1/2, 1) and {en}n∈N is a complete orthonormal basis of U .

Denoted by E(t) = exp(−tA), t ≥ 0 the analytic semigroup generated by −A, under certain

assumptions specified later, (1.1) admits a unique mild solution X : [0, T ]× Ω → U , given by

X(t) = E(t)ξ +

∫ t

0

E(t− s)F (X(s)) ds+

∫ t

0

E(t− s)ΨdWH(s), P-a.s., (1.3)

where the stochastic integral is defined in [10]. Note that the mild solution (1.3) is rarely known

explicitly and therefore numerical approximations are often helpful. To rigorously justify the

use of the classical Malliavin calculus, firstly, we truncate WH(t) as

WH
K (t) :=

K
∑

n=1

wH
n (t)en, t ∈ [0, T ], (1.4)

and numerically solve the following SPDE driven by the K-dimensional fBm
{

dXK(t) +AXK(t)dt = F (XK(t))dt+ΨdWH
K (t), t ∈ (0, T ],

XK(0) = ξ.
(1.5)

The full discretization of (1.5) is realized by combining the spectral Galerkin method in space

with the exponential Euler method in time. To be specific, the spatial spectral Galerkin method

is given by
{

dXK,N (t) +ANX
K,N(t)dt = PNF (X

K,N(t))dt+ PNΨdWH
K (t), t ∈ (0, T ],

XK,N(0) = PNξ,
(1.6)

and the temporal exponential Euler method reads

XK,M,N
tm+1

= EN (τ)XK,M,N
tm + τEN (τ)F (XK,M,N

tm )

+ EN (τ)Ψ∆WH
K (m), m = 0, 1, . . . ,M − 1. (1.7)


