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Abstract. In most of the method of fundamental solutions (MFS) approaches employed
so far for the solution of inverse geometric problems, the MFS implementation typ-
ically leads to non–linear systems which were solved by standard nonlinear itera-
tive least squares software. In the current approach, we apply a three–step non–
iterative MFS technique for identifying a rigid inclusion from internal data measure-
ments, which consists of: (i) a direct problem to calculate the solution at the set of
measurement points, (ii) the solution of an ill–posed linear problem to determine the
solution on a known virtual boundary and (iii) the solution of a direct problem in
the virtual domain which leads to the identification of the unknown curve using the
MATLAB® functions contour in 2D and isosurface in 3D. The results of several nu-
merical experiments for steady–state heat conduction and linear elasticity in two and
three dimensions are presented and analyzed.
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1 Introduction

The method of fundamental solutions (MFS) has, in recent years, been used extensively
for the solution of inverse geometric problems [7, 15]. This is because its main features
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(meshlessness and ease of application to problems in complex geometries in 2D and 3D)
make it ideally suited for the solution of such problems in which the main dependent
variable along with part of the boundary are unknown and have to be determined from
some extra suitable measurements. The MFS formulations put forward in the literature
typically lead to the solution of systems of nonlinear equations which require the use
of standard nonlinear iterative software such as the MATLAB® routine lsqnonlin, the
application of which can be quite costly. For the approach to become less costly, the
Jacobian of the system needs to be calculated and provided which is rather tedious [19].

The objective of this paper is to extend the application of the MFS combined with
a non-iterative level-set method for identifying a rigid inclusion from internal measure-
ments in the fields of steady-state heat conduction and linear elasticity. Therefore, we
shall consider inverse geometric problems of the type considered in [8, 25, 26] using the
finite difference method, in [28] using the finite element method and [9, 27] using the
boundary element method (BEM). In particular, we shall follow closely the ideas and
strategy developed in [27] which are based on the virtual area/volume concept, and ad-
just them to the MFS. The proposed method leads to the solution of an ill–conditioned
system of linear equations to calculate the solution on the virtual boundary. This involves
the pseudo–inverse of an ill–conditioned matrix which is calculated and regularized us-
ing the truncated singular value decomposition (SVD). We assume that the unknown
rigid inclusion is star–shaped and its boundary lies in a known annular domain in be-
tween the virtual boundary and a curve on which the internal measurements are situated.
Then, the unknown boundary is subsequently recovered by searching for a specific iso–
curve in two dimensions (2D) or a specific iso–surface in three dimensions (3D). These
searches can be easily carried out utilizing the MATLAB® functions contour in 2D and
isosurface in 3D. We should mention that the proposed method has some similarities
to the Kirsch and Kress method [20, 21] proposed by [1], see also [2], for the solution of a
different type of inverse geometric problems. This leads to another way of determining
the solution on the virtual boundary and the Tikhonov regularization [12, Section 4.4] is
applied instead of the truncated SVD.

The type of problems to be solved is presented in Section 2. In Section 3 we describe
in detail the application of the method in the three steps which lead to the determina-
tion of the unknown boundary. The results of several numerical experiments in 2D and
3D steady–state heat conduction and linear elasticity are analyzed in Sections 4 and 5.
Finally, concluding remarks are given in Section 6.

2 Mathematical formulation

We consider the inverse boundary value problem (BVP) for the Laplace equation in R
2

or R
3 [27]

∆u= 0 in Ω :=Ω2\Ω1, (2.1a)
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