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Abstract. In this paper, we present two novel Asymptotic-Preserving Neural Net-
works (APNNs) for tackling multiscale time-dependent kinetic problems, encompass-
ing the linear transport equation and Bhatnagar-Gross-Krook (BGK) equation in all
ranges of Knudsen number. Our primary objective is to devise accurate APNN ap-
proaches for resolving multiscale kinetic equations, which is also efficient in the small
Knudsen number regime. The first APNN for linear transport equation is based on
even-odd decomposition, which relaxes the stringent conservation prerequisites while
concurrently introducing an auxiliary deep neural network. We conclude that en-
forcing the initial condition for the linear transport equation with inflow boundary
conditions is crucial for this network. For the Boltzmann-BGK equation, the APNN
incorporates the conservation of mass, momentum, and total energy into the APNN
framework as well as exact boundary conditions. A notable finding of this study is that
approximating the zeroth, first, and second moments—which govern the conservation
of density, momentum, and energy for the Boltzmann-BGK equation, is simpler than
the distribution itself. Another interesting phenomenon observed in the training pro-
cess is that the convergence of density is swifter than that of momentum and energy.
Finally, we investigate several benchmark problems to demonstrate the efficacy of our
proposed APNN methods.
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1 Introduction

In scientific modeling, kinetic equations describe the dynamics of density distribution of
particles that collide between themselves, or interacting with a medium or external fields.
These equations are defined in the phase space, thus suffer from curse-of-dimensionality.
In addition, they typically involve multiple spatial and/or temporal scales, character-
ized by the Knudsen number, as well as high dimensional nonlocal operators, hence
present significant computational challenges in numerical simulations. For a compre-
hensive overview, please refer to the literature sources [1–4] for a review.

Deep learning methods and deep neural networks (DNNs) have garnered immense
attention within the scientific community, including the possibility of resolving partial
differential equations (PDEs) [5–12]. To explore alternative machine learning approaches
for solving partial differential equations, we refer to the exemplary review article [5].
The key motivation behind such methods is to parameterize the solutions or gradients
of PDE problems using deep neural networks. These methods ultimately culminate in a
minimization problem that is typically high-dimensional and nonconvex. Unlike classi-
cal numerical methods, deep learning methods are mesh-free and can solve PDEs in high
dimension, complex domains and geometries. It is also advantageous to possess flexi-
bility and ease of execution. Nonetheless, deep learning methods have several potential
drawbacks, including lengthy training times, a lack of convergence, and reduced accu-
racy. The idea of operator learning, on the other hand, offers a method to resolve a class
of PDEs by training the neural network just once [13–18]. It is important to note, however,
that a number of issues regarding the convergence theory remain unclear.

In recent years, there has been extensive research conducted on multiscale kinetic
equations and hyperbolic systems by employing deep neural networks. This research
includes, but is not limited to the works cited in references [19–21, 23–27]. In the design
of DNNS, the definition of loss functions is crucial. There are numerous choices available
to build the loss when given a PDE. For instance, the variational formulation (DRM), the
least-squares formulation (PINN, DGM), the weak formulation (WAN), etc. Due to the
presence of small scales, the vanilla Physics-Informed Neural Networks (PINNs) can per-
form poorly for resolving multiscale kinetic equations where small scales present [21,23].
A natural question is what kind of loss is “good”. One important feature is to preserve
important physical properties, such as conservation, symmetry, parity, entropy condi-
tions, and asymptotic limits, etc. In our previous work [21], we developed a DNN
for multiscale kinetic transport equations (with possible uncertainties) by creating a loss
that can capture the limiting macroscopic behavior, as the Knudsen number approaches
zero, satisfying a property known as Asymptotic-Preserving (AP), an asymptotic prop-
erty known to be important in designing efficient numerical methods for multiscale ki-
netic equations [3,22], hence justifies the need to use Asymptotic-Preserving Neural Net-
works (APNNs). This APNN method is based on the micro-macro decomposition, and
we demonstrated that the loss is AP with respect to the Knudsen number when it tends


