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Abstract. Deep Ritz method is a deep learning paradigm to solve partial differential
equations. In this article we study the generalization error of the Deep Ritz method.
We focus on the quintessential problem which is the Poisson’s equation. We show that

generalization error of the Deep Ritz method converges to zero with rate C√
n

, and we

discuss about the constant C. Results are obtained for shallow and residual neural
networks with smooth activation functions.
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1 Introduction

We are studying the Deep Ritz method [1], in particular the problem of approximating
the solution of the Poisson’s equation in a ball with deep neural networks [2, 3]; the re-
sults given in this article can easily be generalized for more complex domains, what is
important is that the domain is bounded. Let us give a few definitions and remarks to
frame what we are talking about here.

1.1 Deep Ritz Method

Let Ω⊂R
d be a bounded domain with a smooth boundary, where d∈N is the dimension.

Let’s consider the Poisson’s equation

−∆u= f ,
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where f is some function, possibly f ∈L2(Ω), sometimes referred as the source term. We
can consider this equation with Dirichlet boundary condition as

{
−∆u= f in Ω,

u=0 on ∂Ω.
(1.1)

The Poisson’s equation can also be stated in a variational form as

min
u∈H1

0(R
d)

∫

Ω

1

2
|∇u|2− f u, (1.2)

meaning that a minimizer of the integral in (1.2), among a set of admissible functions
H1

0(R
d), is the solution of the Poisson’s equation. Here a natural choice for the set of

admissible functions is the Sobolev space H1
0(Ω). This variational form is what was pro-

posed for a loss function in [1], known as the Deep Ritz method (DRM). However, in
DRM we cannot minimize the integral over some Sobolev space – the set of admissible
functions will be some set of neural networks.

When the set of admissible functions is some set of neural networks, then the zero
boundary condition might not be met, and one must add a penalty term in order to force
the solution to meet the boundary condition. Therefore the loss function for the Deep
Ritz method will be

min
u∈H

∫

Ω

(1

2
|∇u|2− f u

)
+λ

∫

∂Ω

u2, (1.3)

where the penalty term λ>0 is a constant. The minimal solution for (1.3) must take into
account the boundary values as well, and so this is the actual theoretical loss function for
the DRM. The latter variational form is related to another boundary value problem for
the Poisson’s equation, namely the Robin boundary value problem

{
−∆u= f in Ω,

u+ 1
2λ ∂νu=0 on ∂Ω,

(1.4)

where ∂νu is the derivative of u into direction of the normal of the boundary ∂Ω. These
two boundary value problems are connected with the parameter λ, and it is a known
result that if we let λ→∞ then the solution of the Robin problem converges to the solution
of the Dirichlet problem [4].

The theoretical loss function (1.3) can be represented as

Lλ(u)= |Ω|EX∼U(Ω)

[
‖∇u(X)‖2

2

2
−u(X) f (X)

]

+
λ

2
|∂Ω|EY∼U(∂Ω)[T(u(Y)2)], (1.5)


