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Abstract. In this paper, we propose a nonconforming virtual element method for the

elliptic interface problem based on an unfitted polygonal mesh. On interface elements,

the intersecting points of the interface and the edges of elements are considered as ad-

ditional nodes of the mesh, and then we present a virtual element space satisfying the

interface conditions. On non-interface elements, we use the usual nonconforming vir-

tual element. By employing a computable operator, we introduce a discrete scheme

and obtain optimal convergence results which are independent of the contrast of the

coefficients. Numerical examples are presented to validate the theoretical results.
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1. Introduction

It is known that physical systems such as blood flow models, heat conduction problems,

and groundwater pollution are coupled through interfaces. However, the discontinuity of

the system coefficients on the interface, may influence the performance of the numerical

methods employed in the problem solution.

We note that finite element methods for interface problems can be classified as fitted-

and unfitted-mesh methods. Based on fitted-mesh, the standard finite element method

can obtain the optimal convergence [7]. However, it is costly to generate a good quality

mesh, especially if the interface is complex or the interface moves. So the unfitted-mesh

method has attracted a lot of attentions. The unfitted-mesh method for solving interface
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problems is mainly divided into two categories. One is to double the degrees of freedom

on interface elements and weakly impose the interface conditions in a discrete bilinear

form [4,9,10,22,24,27,30,40]. The other one is to modify the finite element basis functions

on the interface elements to approximately satisfy interface conditions [19,23,29,31–34].

The virtual element method (VEM), proposed by L. Beirão da Veiga et al. [5], is an effec-

tive numerical method for partial differential equation problems. It has been successfully

applied to various problems, such as elastic problems [6,41], control problems with Darcy

constraint [39], Stokes problems [2, 11, 37], Helmholtz problems [35], elliptic hemivaria-

tional inequalities [20], etc. Actually, VEM can be regarded as a generalization of the finite

element method. The main characteristics of this method are that there are no explicit

expressions of the basis functions usually, which makes it easier to extend to higher order

approximation, and it can naturally deal with hang nodes, making it suitable for geometri-

cally complex problems. In fact, numerical experiments have shown that the VEM is robust

to mesh distortion. Brenner and Sung [8] established the optimal error estimates for VEMs

discretization of a model Poisson problem on polygonal or polyhedral meshes with small

edges or faces.

There are a few papers discussing VEM for solving interface problems. In [13,14], a vir-

tual element method is proposed to solve the Maxwell interface problem in two dimensions

and electromagnetic interface problem in three dimensions respectively. Immersed virtual

element methods for elliptic interface problems in two dimensions is analyzed in [15].

In [17], the authors propose an interface-fitted shape regular polytopal mesh generator

and virtual element methods for elliptic interface problems. Tushar et al. [36] extend the

analysis for the finite element method in [18] to VEM for the two dimensional elliptic in-

terface problem and obtain nearly optimal error estimates under realistic assumptions. All

the existing VEMs for the interface problem are conforming. To the best of our knowledge,

there is no nonconforming VEM for interface problem in the literature.

In this paper, we introduce a nonconforming virtual element method, which is a gen-

eralization of the conforming version in [38], for the elliptic interface problem. On each

non-interface element, we use the usual nonconforming virtual element in [3]. On each

interface element, we regard the intersection points between each interface element and

the interface as nodes of a polygon, and hereafter introduce a lowest order virtual element

space satisfying the interface conditions. Then, we define a suitable discrete bilinear form,

which consists of two parts, one is the projection term, behaving as a polynomial to en-

sure approximation, and the other one is the remainder, which is called the stabilization,

see [12]. Unfortunately, on interface elements, our local virtual element spaces do not

contain linear polynomials. We introduce a piecewise linear polynomial space that weakly

satisfies the interface conditions and a computable projection-like operator to the piecewise

linear polynomial space. We prove that the error with respect to the energy norm for the

proposed method is optimal, and does not depend on the high contrast of the coefficients.

An outline of the paper is as follows. In Section 2, we introduce the model problem and

some notations. The virtual element space and the discrete bilinear form are presented

in Section 3. In Section 4, the error equation and error estimates are presented. Finally,

Section 5 contains numerical examples aimed to verify the theoretical results.


