Some Generalization for an Operator Which Preserving Inequalities Between Polynomials

Ahmad Zireh ${ }^{1, *}$, Susheel Kumar ${ }^{2}$ and Kum Kum Dewan ${ }^{2}$

${ }^{1}$ Department of Mathematics, University of Shahrood, Shahrood, Iran
${ }^{2}$ Department of Mathematics, Jamia Millia Islamia, New Delhi, India
Received 21 January 2014; Accepted (in revised version) 12 May 2014
Available online 16 October 2014

$$
\begin{aligned}
& \text { Abstract. For a polynomial } p(z) \text { of degree } n \text { which has no zeros in }|z|<1 \text {, Dewan et } \\
& \text { al., (K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial } \\
& \text { inequalities, J. Math. Anal. Appl., } 363 \text { (2010), 38-41) established } \\
& \qquad\left|z p^{\prime}(z)+\frac{n \beta}{2} p(z)\right| \leq \frac{n}{2}\left\{\left(\left|\frac{\beta}{2}\right|+\left|1+\frac{\beta}{2}\right|\right) \max _{|z|=1}|p(z)|-\left(\left|1+\frac{\beta}{2}\right|-\left|\frac{\beta}{2}\right|\right) \min _{|z|=1}|p(z)|\right\},
\end{aligned}
$$

for any complex number β with $|\beta| \leq 1$ and $|z|=1$. In this paper we consider the operator B, which carries a polynomial $p(z)$ into

$$
B[p(z)]:=\lambda_{0} p(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{p^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{p^{\prime \prime}(z)}{2!}
$$

where λ_{0}, λ_{1}, and λ_{2} are such that all the zeros of $u(z)=\lambda_{0}+c(n, 1) \lambda_{1} z+c(n, 2) \lambda_{2} z^{2}$ lie in the half plane $|z| \leq|z-n / 2|$. By using the operator B, we present a generalization of result of Dewan. Our result generalizes certain well-known polynomial inequalities.

Key Words: B-operator, inequality, polynomial, maximum modulus, restricted zeros.
AMS Subject Classifications: 30A10, 30C10, 30D15

1 Introduction and statement of results

Let $p(z)$ be a polynomial of degree n and $p^{\prime}(z)$ its derivative. Then it is well known that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)|, \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\max _{|z|=R>1}|p(z)| \leq R^{n} \max _{|z|=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

\]

Inequality (1.1) is a famous result due to Bernstein [7], whereas inequality (1.2) is a simple consequence of maximum modulus principle (see [16]). Both the above inequalities are sharp and equality in each holds for the polynomials having all its zeros at the origin.

For the class of polynomials having no zeros in $|z|<1$, inequalities (1.1) and (1.2) have respectively been replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)|, \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R>1}|p(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|p(z)| . \tag{1.4}
\end{equation*}
$$

Inequality (1.3) was conjectured by Erdös and later proved by Lax [13], whereas inequality (1.4) was proved by Ankeny and Rivlin [1], for which they made use of (1.3). Both these inequalities are also sharp and equality in each holds for polynomials having all its zeros on $|z|=1$.

Aziz and Dawood [4] used $\min _{|z|=1}|p(z)|$ to obtain a refinement of inequalities (1.3) and (1.4) by demonstrating if $p(z)$ is a polynomial of degree n which does not vanish in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2}\left\{\max _{|z|=1}|p(z)|-\min _{|z|=1}|p(z)|\right\}, \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R>1}|p(z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{|z|=1}|p(z)|-\left(\frac{R^{n}-1}{2}\right) \min _{|z|=1}|p(z)| . \tag{1.6}
\end{equation*}
$$

Both these inequalities are also sharp and equality in each holds for polynomials having all its zeros on $|z|=1$.

As refinement of inequalities (1.5) and (1.6), Dewan et al. [8,9] proved that under the same hypothesis, for every $|\beta| \leq 1, R>1$ and $|z|=1$ we have

$$
\begin{equation*}
\left|z p^{\prime}(z)+\frac{n \beta}{2} p(z)\right| \leq \frac{n}{2}\left\{\left(\left|1+\frac{\beta}{2}\right|+\left|\frac{\beta}{2}\right|\right) \max _{|z|=1}|p(z)|-\left(\left|1+\frac{\beta}{2}\right|-\left|\frac{\beta}{2}\right|\right) \min _{|z|=1}|p(z)|\right\}, \tag{1.7}
\end{equation*}
$$

and

$$
\begin{align*}
\left|p(R z)+\beta\left(\frac{R+1}{2}\right)^{n} p(z)\right| \leq & \frac{1}{2}\left\{\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \max _{|z|=1}|p(z)|\right. \\
& \left.-\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|-\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \min _{|z|=1}^{n}|p(z)|\right\} . \tag{1.8}
\end{align*}
$$

[^0]: *Corresponding author. Email addresses: azireh@gmail.com or azireh@shahroodut.ac.ir (A. Zireh), ahlawat_skumar@yahoo.co.in (S. Kumar), kkdewan123@yahoo.co.in (K. K. Dewan)

