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Abstract. For a polynomial p(z) of degree n which has no zeros in |z|< 1, Dewan et
al., (K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial
inequalities, J. Math. Anal. Appl., 363 (2010), 38–41) established∣∣∣zp′(z)+
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for any complex number β with |β| ≤ 1 and |z|= 1. In this paper we consider the
operator B, which carries a polynomial p(z) into

B[p(z)] :=λ0 p(z)+λ1
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where λ0, λ1, and λ2 are such that all the zeros of u(z)=λ0+c(n,1)λ1z+c(n,2)λ2z2 lie
in the half plane |z|≤|z−n/2|. By using the operator B, we present a generalization of
result of Dewan. Our result generalizes certain well-known polynomial inequalities.

Key Words: B-operator, inequality, polynomial, maximum modulus, restricted zeros.

AMS Subject Classifications: 30A10, 30C10, 30D15

1 Introduction and statement of results

Let p(z) be a polynomial of degree n and p′(z) its derivative. Then it is well known that

max
|z|=1

|p′(z)|≤nmax
|z|=1

|p(z)|, (1.1)
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and
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Inequality (1.1) is a famous result due to Bernstein [7], whereas inequality (1.2) is a simple
consequence of maximum modulus principle (see [16]). Both the above inequalities are
sharp and equality in each holds for the polynomials having all its zeros at the origin.

For the class of polynomials having no zeros in |z|<1, inequalities (1.1) and (1.2) have
respectively been replaced by
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Inequality (1.3) was conjectured by Erdös and later proved by Lax [13], whereas inequal-
ity (1.4) was proved by Ankeny and Rivlin [1], for which they made use of (1.3). Both
these inequalities are also sharp and equality in each holds for polynomials having all its
zeros on |z|=1.

Aziz and Dawood [4] used min|z|=1 |p(z)| to obtain a refinement of inequalities (1.3)
and (1.4) by demonstrating if p(z) is a polynomial of degree n which does not vanish in
|z|<1, then
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Both these inequalities are also sharp and equality in each holds for polynomials having
all its zeros on |z|=1.

As refinement of inequalities (1.5) and (1.6), Dewan et al. [8, 9] proved that under the
same hypothesis, for every |β|≤1, R>1 and |z|=1 we have∣∣∣zp′(z)+
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