COMMON FIXED POINTS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS

Sumit Chandok and T. D. Narang (*Guru Nanak Dev University, India*)

Received Jan. 4, 2010

Abstract. For a subset *K* of a metric space (X, d) and $x \in X$,

$$P_K(x) = \left\{ y \in K : d(x,y) = d(x,K) \equiv \inf\{d(x,k) : k \in K\} \right\}$$

is called the set of best *K*-approximant to *x*. An element $g_{\circ} \in K$ is said to be a best simultaneous approximation of the pair $y_1, y_2 \in X$ if

$$\max\left\{d(y_1,g_{\circ}),d(y_2,g_{\circ})\right\} = \inf_{g\in K} \max\{d(y_1,g),d(y_2,g)\right\}.$$

In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T- and S- invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas^[1], S. Chandok and T.D. Narang^[2], T.D. Narang and S. Chandok^[11], S.A. Sahab, M.S. Khan and S. Sessa^[14], P. Vijayaraju^[20] and P. Vijayaraju and M. Marudai^[21].

Key words: Banach operator pair, best approximation, demicompact, fixed point, starshaped, nonexpansive, asymptotically nonexpansive and uniformly asymptotically regular maps

AMS (2010) subject classification: 41A50, 41A60, 41A65, 47H10, 54H25

1 Introduction

Let (X,d) be a metric space. A mapping $W: X \times X \times [0,1] \to X$ is said to be (s.t.b.) a **convex** structure on X if for all $x, y \in X$ and $\lambda \in [0,1]$

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda) d(u, y)$$

holds for all $u \in X$. The metric space (X,d) together with a convex structure is called a **convex** metric space ^[19].

2 S. Chandok et al : Common Fixed Points with Applications to Best Approximations

A convex metric space (X,d) is said to satisfy **Property** $(\mathbf{I})^{[7]}$ if for all $x, y, p \in X$ and $\lambda \in [0,1]$,

$$d(W(x,p,\lambda),W(y,p,\lambda)) \leq \lambda d(x,y).$$

A normed linear space and each of its convex subset are simple examples of convex metric spaces. There are many convex metric spaces which are not normed linear spaces (see [19]). Property (I) is always satisfied in a normed linear space.

A subset *K* of a convex metric space (X, d) is s.t.b. **convex**^[19] if $W(x, y, \lambda) \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$. A set *K* is said to be *p*-starshaped (see [8]) where $p \in K$, provided $W(x, p, \lambda) \in K$ for all $x \in K$ and $\lambda \in [0, 1]$ i.e. the segment

$$[p,x] = \{W(x,p,\lambda) : 0 \le \lambda \le 1\}$$

joining *p* to *x* is contained in *K* for all $x \in K$. *K* is said to be **starshaped** if it is *p*-starshaped for some $p \in K$.

Clearly, each convex set is starshaped but not conversely.

A self map T on a metric space (X,d) is s.t.b.

i) **nonexpansive** if $d(Tx, Ty) \le d(x, y)$ for all $x, y \in X$;

ii) contraction if there exists an α , $0 \le \alpha < 1$ such that $d(Tx, Ty) \le \alpha d(x, y)$ for all $x, y \in X$. For a nonempty subset *K* of a metric space (X, d), a mapping $T : K \to K$ is s.t.b.

i) **demicompact** if every bounded sequence $\langle x_n \rangle$ in K satisfying $d(x_n, Tx_n) \rightarrow 0$ has a convergent subsequence;

ii) **asymptotically** nonexpansive [6] if there exists a sequence $\{k_n\}$ of real numbers in $[1,\infty)$ with $k_n \ge k_{n+1}, k_n \to 1$ as $n \to \infty$ such that $d(T^n(x), T^n(y)) \le k_n d(x, y)$, for all $x, y \in K$.

Let $T, S : K \to K$. Then T is s.t.b.

i) *S*-asymptotically nonexpansive if there exists a sequence $\{k_n\}$ of real numbers in $[1,\infty)$ with $k_n \ge k_{n+1}, k_n \to 1$ as $n \to \infty$ such that $d(T^n(x), T^n(y)) \le k_n d(Sx, Sy)$, for all $x, y \in K$;

ii) **uniformly asymptotically regular** on *K* if for each $\varepsilon > 0$ there exists a positive integer *N* such that $d(T^n(x), T^n(y)) < \varepsilon$ for all $n \ge N$ and for all $x, y \in K$.

A point $x \in K$ is a **common fixed (coincidence) point** of *S* and *T* if x = Sx = Tx (Sx = Tx). The set of fixed points (respectively, coincidence points) of *S* and *T* is denoted by F(S,T) (respectively, C(S,T)).

The mappings $T, S : K \to K$ are s.t.b. **commuting** on *K* if STx = TSx for all $x \in K$; *R*-weakly **commuting**^[13] on *K* if there exists R > 0 such that

$$d(TSx,STx) \le Rd(Tx,Sx)$$

for all $x \in K$; **compatible**^[9] if $\lim d(TSx_n, STx_n) = 0$ whenever $\{x_n\}$ is a sequence such that $\lim Tx_n = \lim Sx_n = t$ for some t in M; weakly compatible^[10] if S and T commute at their coincidence points, i.e., if STx = TSx whenever Sx = Tx.