COMMON FIXED POINTS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS

Sumit Chandok and T. D. Narang
(Guru Nanak Dev University, India)

Received Jan. 4, 2010

Abstract. For a subset K of a metric space (X, d) and $x \in X$,

$$
P_{K}(x)=\{y \in K: d(x, y)=d(x, K) \equiv \inf \{d(x, k): k \in K\}\}
$$

is called the set of best K-approximant to x. An element $g_{\circ} \in K$ is said to be a best simultaneous approximation of the pair $y_{1}, y_{2} \in X$ if

$$
\max \left\{d\left(y_{1}, g_{\circ}\right), d\left(y_{2}, g_{\circ}\right)\right\}=\inf _{g \in K} \max \left\{d\left(y_{1}, g\right), d\left(y_{2}, g\right)\right\} .
$$

In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T - and S - invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas ${ }^{[1]}$, S. Chandok and T.D. Narang ${ }^{[2]}$, T.D. Narang and S. Chandok ${ }^{[11]}$, S.A. Sahab, M.S. Khan and S. Sessa ${ }^{[14]}$, P. Vijayaraju ${ }^{[20]}$ and P. Vijayaraju and M. Marudai ${ }^{[21]}$.
Key words: Banach operator pair, best approximation, demicompact, fixed point, starshaped, nonexpansive, asymptotically nonexpansive and uniformly asymptotically regular maps
AMS (2010) subject classification: 41A50, 41A60, 41A65, 47H10, 54H25

1 Introduction

Let (X, d) be a metric space. A mapping $W: X \times X \times[0,1] \rightarrow X$ is said to be (s.t.b.) a convex structure on X if for all $x, y \in X$ and $\lambda \in[0,1]$

$$
d(u, W(x, y, \lambda)) \leq \lambda d(u, x)+(1-\lambda) d(u, y)
$$

holds for all $u \in X$. The metric space (X, d) together with a convex structure is called a convex metric space ${ }^{[19]}$.

A convex metric space (X, d) is said to satisfy Property (I) ${ }^{[7]}$ if for all $x, y, p \in X$ and $\lambda \in$ $[0,1]$,

$$
d(W(x, p, \lambda), W(y, p, \lambda)) \leq \lambda d(x, y)
$$

A normed linear space and each of its convex subset are simple examples of convex metric spaces. There are many convex metric spaces which are not normed linear spaces (see [19]). Property (I) is always satisfied in a normed linear space.

A subset K of a convex metric space (X, d) is s.t.b. convex ${ }^{[19]}$ if $W(x, y, \lambda) \in K$ for all $x, y \in K$ and $\lambda \in[0,1]$. A set K is said to be p-starshaped (see [8]) where $p \in K$, provided $W(x, p, \lambda) \in K$ for all $x \in K$ and $\lambda \in[0,1]$ i.e. the segment

$$
[p, x]=\{W(x, p, \lambda): 0 \leq \lambda \leq 1\}
$$

joining p to x is contained in K for all $x \in K . K$ is said to be starshaped if it is p-starshaped for some $p \in K$.

Clearly, each convex set is starshaped but not conversely.
A self map T on a metric space (X, d) is s.t.b.
i) nonexpansive if $d(T x, T y) \leq d(x, y)$ for all $x, y \in X$;
ii) contraction if there exists an $\alpha, 0 \leq \alpha<1$ such that $d(T x, T y) \leq \alpha d(x, y)$ for all $x, y \in X$.

For a nonempty subset K of a metric space (X, d), a mapping $T: K \rightarrow K$ is s.t.b.
i) demicompact if every bounded sequence $<x_{n}>$ in K satisfying $d\left(x_{n}, T x_{n}\right) \rightarrow 0$ has a convergent subsequence;
ii) asymptotically nonexpansive [6] if there exists a sequence $\left\{k_{n}\right\}$ of real numbers in $[1, \infty)$ with $k_{n} \geq k_{n+1}, k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $d\left(T^{n}(x), T^{n}(y)\right) \leq k_{n} d(x, y)$, for all $x, y \in K$.

Let $T, S: K \rightarrow K$. Then T is s.t.b.
i) S-asymptotically nonexpansive if there exists a sequence $\left\{k_{n}\right\}$ of real numbers in $[1, \infty)$ with $k_{n} \geq k_{n+1}, k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $d\left(T^{n}(x), T^{n}(y)\right) \leq k_{n} d(S x, S y)$, for all $x, y \in K$;
ii) uniformly asymptotically regular on K if for each $\varepsilon>0$ there exists a positive integer N such that $d\left(T^{n}(x), T^{n}(y)\right)<\varepsilon$ for all $n \geq N$ and for all $x, y \in K$.

A point $x \in K$ is a common fixed (coincidence) point of S and T if $x=S x=T x(S x=$ $T x)$. The set of fixed points (respectively, coincidence points) of S and T is denoted by $F(S, T)$ (respectively, $C(S, T)$).

The mappings $T, S: K \rightarrow K$ are s.t.b. commuting on K if $S T x=T S x$ for all $x \in K$; R-weakly commuting ${ }^{[13]}$ on K if there exists $R>0$ such that

$$
d(T S x, S T x) \leq R d(T x, S x)
$$

for all $x \in K$; compatible ${ }^{[9]}$ if $\lim d\left(T S x_{n}, S T x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence such that $\lim T x_{n}=\lim S x_{n}=t$ for some t in M; weakly compatible ${ }^{[10]}$ if S and T commute at their coincidence points, i.e., if $S T x=T S x$ whenever $S x=T x$.

