Anal. Theory Appl. Vol. 28, No. 3 (2012), 224–231 DOI : 10.3969/j.issn.1672-4070.2012.03.002

BMO ESTIMATES FOR MULTILINEAR FRACTIONAL INTEGRALS*

Xiangxing Tao and Yunpin Wu

(Zhejiang University of Science and Technology, China)

Received July 30, 2010

Abstract. In this paper, the authors prove that the multilinear fractional integral operator $T_{\Omega,\alpha}^{A_1,A_2}$ and the relevant maximal operator $M_{\Omega,\alpha}^{A_1,A_2}$ with rough kernel are both bounded from $L^p(1 to <math>L^q$ and from L^p to $L^{n/(n-\alpha),\infty}$ with power weight, respectively, where

$$T_{\Omega,\alpha}^{A_1,A_2}(f)(x) = \int_{\mathbf{R}^n} \frac{R_{m_1}(A_1;x,y)R_{m_2}(A_2;x,y)}{|x-y|^{n-\alpha+m_1+m_2-2}} \Omega(x-y)f(y) dy$$

and

$$M_{\Omega,\alpha}^{A_1,A_2}(f)(x) = \sup_{r>0} \frac{1}{r^{n-\alpha+m_1+m_2-2}} \int_{|x-y|< r} \prod_{i=1}^2 R_{m_i}(A_i;x,y) \Omega(x-y) f(y) | \mathrm{d}y,$$

and $0 < \alpha < n$, $\Omega \in L^{s}(S^{n-1})(s \ge 1)$ is a homogeneous function of degree zero in \mathbb{R}^{n} , A_{i} is a function defined on \mathbb{R}^{n} and $R_{m_{i}}(A_{i};x,y)$ denotes the $m_{i} - th$ remainder of Taylor series of A_{i} at x about y. More precisely, $R_{m_{i}}(A_{i};x,y) = A_{i}(x) - \sum_{|\gamma| < m_{i}} \frac{1}{\gamma!} D^{\gamma} A_{i}(y)(x-y)^{r}$, where $D^{\gamma}(A_{i}) \in BMO(\mathbb{R}^{n})$ for $|\gamma| = m_{i} - 1(m_{i} > 1)$, i = 1, 2.

Key words: multilinear operator, fractional integral, rough kernel, BMO

AMS (2010) subject classification: 42B20, 42B25

1 Introduction

As two of the most important operators in harmonic analysis, the fractional integral operator $T_{\Omega,\alpha}$ and the corresponding maximal operator $M_{\Omega,\alpha}$ are defined by

$$T_{\Omega,\alpha}f(x) := \int_{\mathbf{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) \mathrm{d}y, \tag{1.1}$$

^{*} Supported in part by the NNSF of China under Grant #10771110 and # 11171306 and by the ZNSF of China under Grant LY12A01024.

Anal. Theory Appl., Vol. 28, No.3 (2012)

$$M_{\Omega,\alpha}f(x) := \sup_{h>0} \int_{|x-y|$$

where $0 < \alpha < n, 1/q = 1/p - \alpha/n$ and $\Omega \in L^s(S^{n-1}) (s \ge n/(n-\alpha))$ is homogeneous of degree zero in \mathbb{R}^n . In 1993 and 1998, Chanillo ^[1] and Ding ^[7] proved that $T_{\Omega,\alpha}$ and $M_{\Omega,\alpha}$ are bounded from $L^p(1 to <math>L^q$ respectively. In 1997, Ding ^[2] gave that if $-1 < \beta < 0$ and $f \in L^1(|x|^{\beta(n-\alpha)/n})$, then $T_{\Omega,\alpha}$ and $M_{\Omega,\alpha}$ are both bounded from $L^1(|x|^{\beta(n-\alpha)/n})$ to $L^{n/(n-\alpha),\infty}$.

It is well known that the study of multilinear fractional integral operators are received increasing attentions. Let $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_n)$, and $\gamma_i (i = 1, 2, \dots, n)$ be nonnegtive integers. Denote $|\gamma| = \sum_{i=1}^n \gamma_i, \gamma! = \gamma_1! \gamma_2! \cdots \gamma_n!, x^{\gamma} = x_1^{\gamma_1} x_2^{\gamma_2} \cdots x_n^{\gamma_n}$

$$D^{\gamma} = \frac{\partial^{|\gamma|}}{\partial^{\gamma_1} x_1 \partial^{\gamma_2} x_2 \cdots \partial^{\gamma_n} x_n}$$

Suppose that *A* is a function defined on \mathbb{R}^n . Denote by $R_m(A;x,y)$ the *m*-th order remainder of the Taylor series of *A* at *x* about *y*, that is, $R_m(A;x,y) = A(x) - \sum_{|\gamma| < m} \frac{1}{\gamma!} D^{\gamma} A(y) (x-y)^r$, $m \ge 1$. Then the multilinear fractional integral operator $T^A_{\Omega,\alpha}$ is defined by

$$T^{A}_{\Omega,\alpha}f(x) := \int_{\mathbf{R}^{n}} \frac{\Omega(x-y)R_{m}(A;x,y)}{|x-y|^{n-\alpha+m-1}} f(y) \mathrm{d}y$$
(1.3)

and the relevant maximal operator $M^A_{\Omega,\alpha}$ is given by

$$M^{A}_{\Omega,\alpha}f(x) := \sup_{r>0} \frac{1}{r^{n-\alpha+m-1}} \int_{|x-y|< r} |\Omega(x-y)R_{m}(A;x,y)f(y)| \mathrm{d}y.$$
(1.4)

In 2001, $\operatorname{Ding}^{[3]}$ proved that if $D^{\gamma}A \in L^{r}(\mathbb{R}^{n})(1 < r \leq \infty, |\gamma| = m - 1)$, then $T_{\Omega,\alpha}^{A}$, $M_{\Omega,\alpha}^{A}$ are both weighted bounded operators from $L^{p}(w^{p})$ to $L^{q}(w^{q})$ with the weight $w \in A(p,q)$ and from $L^{p}(1 \leq p < n/\alpha)$ to $L^{n/(n-\alpha),\infty}$ with the power weight. Obviously, when m = 1, $T_{\Omega,\alpha}^{A}$ reduces to the commutator generated by the fractional integral $T_{\Omega,\alpha}$ and the function A. In 2002, Yang and Wu ^[9] proved that if $D^{\gamma}A \in \operatorname{BMO}(\mathbb{R}^{n})$, then $T_{\Omega,\alpha}^{A}$ and $M_{\Omega,\alpha}^{A}$ are bounded from $L^{p}(1 to <math>L^{q}$. In 2003, Lu and Zhang^[5] proved that if $D^{\gamma}A \in \wedge_{\beta}$, $s > \frac{n}{n - (\alpha + 2\beta)}$, $0 < \beta < 1$, $1/q = 1/p - (\alpha + \beta)/n$, then $T_{\Omega,\alpha}^{A}$ and $M_{\Omega,\alpha}^{A}$ are bounded from $L^{p}(1 to <math>L^{q}$ and from L^{1} to $L^{n/n-\alpha-\beta,\infty}$. In 2001, Lu and Ding^[4] showed that if $D^{\gamma}A_{j} \in \operatorname{BMO}(\mathbb{R}^{n})$, than the operator

$$T_{\Omega,\alpha}^{A_1,A_2,\cdots,A_k}f(x) := \int_{\mathbf{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha+N}} \prod_{j=1}^k R_{m_j}(A_j;x,y)f(y) \mathrm{d}y$$
(1.5)

with $N = \sum_{j=1}^{k} (m_j - 1)(m_j \ge 2)$ and the relevant maximal operator

$$M_{\Omega,\alpha}^{A_1,A_2,\cdots,A_k} f(x) := \sup_{r>0} \frac{1}{r^{n-\alpha+N}} \int_{|x-y|< r} |\Omega(x-y) \prod_{j=1}^k R_{m_j}(A_j;x,y) f(y)| dy$$
(1.6)