EXISTENCE PROBLEMS OF ADDITIVE SELECTION MAPS FOR ANOTHER TYPE SUBADDITIVE SET-VALUED MAP

Yongjie Piao and Hailan Jin
(Yanbian University, China)

Received Apr. 9, 2011; Revised Sept. 7, 2012

Abstract. In this paper, we consider the following subadditive set-valued map $F: X \longrightarrow$ $P_{0}(Y)$:

$$
F\left(\sum_{i=1}^{r} x_{i}+\sum_{j=1}^{s} x_{r+j}\right) \subseteq r F\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right)+s F\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right), \quad \forall x_{i} \in X, \quad i=1,2, \cdots, r+s
$$

where r and s are two natural numbers. And we discuss the existence and unique problem of additive selection maps for the above set-valued map.

Key words: additive selection map, subadditive, additive selection, cone
AMS (2010) subject classification: 54C65, 54C60, 39B52, 47H04, 49J54

1 Introduction and Preliminaries

The stability problem of functional equations was originated from a question of Ulam ${ }^{[1]}$ concerning the stability of group homomorphisms. In 1941, D.H Hyers ${ }^{[2]}$ gave a first affirmative partial answer to the question of Ulam for Banach spaces. The famous stability theorem is as follows:

Theorem 0. Let E_{1} be a normed vector space and E_{2} a Banach space. Suppose that the mapping $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \tag{0}
\end{equation*}
$$

for all $x, y \in E_{1}$, with $\varepsilon>0$ a constant. Then the limit

$$
g(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

exists for each $x \in E_{1}$ and g is the unique additive mapping satisfying

$$
\|f(x)-g(x)\| \leq \varepsilon
$$

for all $x \in E_{1}$.
Later, Hyers' Theorem has been generalized by many authors ${ }^{[3-8]}$.
Let X a real vector space. We denote by $P_{0}(X)$ the family of all nonempty subsets of X.
If Y is a topological vector space, the family of all closed convex subsets of Y denoted by $\operatorname{ccl}(Y)$.

Let A and B are two nonempty subsets of the real vector space X, λ and μ are two real numbers. Define

$$
\begin{aligned}
& A+B=\{x \mid x=a+b, a \in A, b \in B\} ; \\
& \lambda A=\{x \mid x=\lambda a, a \in A\} .
\end{aligned}
$$

The next properties are obvious:
Lemma. If A and B are two nonempty subsets of the real vector space X, λ and μ are two real numbers, then

$$
\lambda(A+B)=\lambda A+\lambda B ; \quad(\lambda+\mu) A \subseteq \lambda A+\mu A
$$

Furthermore, if A is a convex subset and $\lambda \mu \geq 0$, then we have the following formula ${ }^{[9]}$:

$$
(\lambda+\mu) A=\lambda A+\mu A
$$

A subset $A \subset X$ is said to be a cone if $A+A \subseteq A$, and $\lambda A \subseteq A$ for all $\lambda>0$.
If the zero in X belongs to A, we say that A is a zero cone.
Let X and Y be two real vector spaces, $f: X \longrightarrow Y$ a single-valued map, and $F: X \longrightarrow P_{0}(Y)$ a set-valued map. f is called an additive selection of F, if $f(x+y)=f(x)+f(y)$ for all $x, y \in X$, and $f(x) \in F(x)$ for all $x \in X$.

Let $B(0, \varepsilon)$ denote the open ball with center 0 and radius ε in E_{2} in Theorem 0 , then the inequality (0) may be written as

$$
f(x+y) \in B(0, \varepsilon)+f(x)+f(y),
$$

and hence

$$
f(x+y)+B(0, \varepsilon) \subseteq f(x)+B(0, \varepsilon)+f(y)+B(0, \varepsilon) .
$$

where $B(0, \varepsilon)+x$ denote the open ball with center x and radius ε in E_{2}.
Thus, if we define a set-valued mapping F by $F(x)=f(x)+B(0, \varepsilon)$ for each $x \in E_{1}$, then we get

$$
F(x+y) \subseteq F(x)+F(y)
$$

and

$$
g(x) \in F(x)
$$

