SOME INTEGRAL INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL

Abdullah Mir
(Kashmir University, India)
Sajad Amin Baba
(Govt. Hr. Sec. Institute, India)

Received Oct. 9, 2010
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

$$
\begin{aligned}
& \text { Abstract. If } P(z) \text { is a polynomial of degree } n \text { which does not vanish in }|z|<1 \text {, then it is } \\
& \text { recently proved by Rather [Jour. Ineq. Pure and Appl. Math., } 9 \text { (2008), Issue 4, Art. 103] } \\
& \text { that for every } \gamma>0 \text { and every real or complex number } \alpha \text { with }|\alpha| \geq 1 \text {, } \\
& \qquad\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{\gamma} \mathrm{d} \theta\right\}^{1 / \gamma} \leq n(|\alpha|+1) C_{\gamma}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{\gamma} \mathrm{d} \theta\right\}^{1 / \gamma}, \\
& \qquad C_{\gamma}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i \beta}\right|^{\gamma} \mathrm{d} \beta\right\}^{-1 / \gamma},
\end{aligned}
$$

where $D_{\alpha} P(z)$ denotes the polar derivative of $P(z)$ with respect to α. In this paper we prove a result which not only provides a refinement of the above inequality but also gives a result of Aziz and Dawood [J. Approx. Theory, 54 (1988), 306-313] as a special case.

Key words: polar derivative, polynomial, Zygmund inequality, zeros
AMS (2010) subject classification: 30A10, 30C10, 30D15, 41A17

1 Introduction and Statement of Results

Let $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ be a polynomial of degree atmost n and $P^{\prime}(z)$ its derivative, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)|, \tag{1.1}
\end{equation*}
$$

and for every $\gamma \geq 1$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{\gamma} \mid r m d \theta\right\}^{1 / \gamma} \leq n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{\gamma} \mathrm{d} \theta\right\}^{1 / \gamma} . \tag{1.2}
\end{equation*}
$$

The inequality (1.1) is a classical result of Bernstein ${ }^{[11]}$ (see also [14]), whereas the inequality (1.2) is due to Zygmund ${ }^{[15]}$, who proved it for all trigonometric polynomials of degree n and not only for those of the form $P\left(e^{i \theta}\right)$. Arestov ${ }^{[1]}$ proved that (1.2) remains true for $0<\gamma<1$ as well. If we let $\gamma \rightarrow \infty$ in the inequality (1.2), we get (1.1).

The above two inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves to the class of polynomials having no zeros in $|z|<1$. In fact, if $P(z) \neq 0$ in $|z|<1$, then (1.1) and (1.2) can be respectively replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{\gamma} \mathrm{d} \theta\right\}^{1 / \gamma} \leq n B_{\gamma}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{\gamma} \mathrm{d} \theta\right\}^{1 / \gamma} \tag{1.4}
\end{equation*}
$$

where

$$
B_{\gamma}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{\gamma} \mathrm{d} \alpha\right\}^{-1 / \gamma}
$$

The inequality (1.3) is conjectured by Erdös and later verified by Lax ${ }^{[9]}$, whereas the inequality (1.4) is proved by De-Bruijn ${ }^{[7]}$ for $\gamma \geq 1$. Further, Rahman and Schmeisser ${ }^{[12]}$ have shown that (1.4) holds for $0<\gamma<1$ also. If we let $\gamma \rightarrow \infty$ in the inequality (1.4), we get (1.3).

The inequality (1.3) is further improved by Aziz and Dawood ${ }^{[4]}$ by proving that if $P(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2}\left\{\max _{|z|=1}|P(z)|-\min _{|z|=1}|P(z)|\right\} . \tag{1.5}
\end{equation*}
$$

Let $D_{\alpha} P(z)$ denote the polar derivative of the polynomial $P(z)$ with respect to a complex number α. Then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) .
$$

The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative $P^{\prime}(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z) .
$$

Aziz ${ }^{[3]}$ extended the inequality (1.3) to the polar derivatives and proved that if $P(z)$ is a polynomial of degree n such that $P(z) \neq 0$ in $|z|<1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \leq \frac{n}{2}(|\alpha|+1) \max _{|z|=1}|P(z)| . \tag{1.6}
\end{equation*}
$$

