# Some Integral Mean Estimates for Polynomials with Restricted Zeros 

Abdullah Mir*, Q. M. Dawood and Bilal Dar<br>Department of Mathematics, University of Kashmir, Srinagar 190006, India

Received 19 January 2014; Accepted (in revised version) 11 March 2015

$$
\begin{aligned}
& \text { Abstract. Let } P(z) \text { be a polynomial of degree } n \text { having all its zeros in }|z| \leq k \text {. For } k=1 \text {, } \\
& \text { it is known that for each } r>0 \text { and }|\alpha| \geq 1, \\
& \qquad n(|\alpha|-1)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \\
& \text { In this paper, we shall first consider the case when } k \geq 1 \text { and present certain generaliza- } \\
& \text { tions of this inequality. Also for } k \leq 1 \text {, we shall prove an interesting result for Lacunary } \\
& \text { type of polynomials from which many results can be easily deduced. }
\end{aligned}
$$

Key Words: Polynomial, zeros, polar derivative.
AMS Subject Classifications: 30A10, 30C10, 30D15

## 1 Introduction and statement of results

Let $P(z)$ be a polynomial of degree $n$ and $P^{\prime}(z)$ be its derivative. It was shown by Turan [21] that if $P(z)$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

More generally, if the polynomial $P(z)$ has all its zeros in $|z| \leq k \leq 1$, it was proved by Malik [12] that the inequality (1.1) can be replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|P(z)|, \tag{1.2}
\end{equation*}
$$

[^0]while as Govil [6] proved that if all the zeros of $P(z)$ lie in $|z| \leq k$ where $k \geq 1$, then
\[

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}} \max _{|z|=1}|P(z)| . \tag{1.3}
\end{equation*}
$$

\]

As an improvement of (1.3), Govil [7] proved that if $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}}\left(\max _{|z|=1}|P(z)|+\min _{|z|=k}|P(z)|\right) . \tag{1.4}
\end{equation*}
$$

Let $D_{\alpha} P(z)$ denotes the polar derivative of the polynomial $P(z)$ of degree $n$ with respect to the point $\alpha$. Then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) .
$$

The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty}\left\{\frac{D_{\alpha} P(z)}{\alpha}\right\}=P^{\prime}(z) \tag{1.5}
\end{equation*}
$$

Shah [18] extended (1.1) to the polar derivative of $P(z)$ and proved that if all the zeros of the polynomial $P(z)$ lie in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1}|P(z)|, \quad|\alpha| \geq 1 . \tag{1.6}
\end{equation*}
$$

Aziz and Rather [3] generalised (1.6) which also extends (1.2) to the polar derivative of a polynomial. In fact, they proved that if all the zeros of $P(z)$ lie in $|z| \leq k$ where $k \leq 1$, then for every real or complex number $\alpha$ with $|\alpha| \geq k$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k}\right) \max _{|z|=1}|P(z)| . \tag{1.7}
\end{equation*}
$$

Further as a generalization of (1.3) to the polar derivative of a polynomial, Aziz and Rather [3] proved that if all the zeros of $P(z)$ lie in $|z| \leq k$ where $k \geq 1$, then for every real or complex number $\alpha$ with $|\alpha| \geq k$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)| . \tag{1.8}
\end{equation*}
$$

Recently Govil and McTume [8] sharpened (1.8) and proved that if all the zeros of $P(z)$ lie in $|z| \leq k, k \geq 1$, then for every real or complex number $\alpha$ with $|\alpha| \geq 1+k+k^{n}$,

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq & n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)| \\
& +n\left(\frac{|\alpha|-\left(1+k+k^{n}\right)}{1+k^{n}}\right) \min _{|z|=k}|P(z)| . \tag{1.9}
\end{align*}
$$


[^0]:    ${ }^{*}$ Corresponding author. Email addresses: mabdullah_mir@yahoo.co.in (A. Mir), qdawood@gmail.com (Q. M. Dawood), darbilal85@ymail.com (B. Dar)

