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PARALLEL PRECONDITIONERS FOR PLANE WAVE

HELMHOLTZ AND MAXWELL SYSTEMS WITH LARGE WAVE

NUMBERS

LONG YUAN, QIYA HU, AND HENGBIN AN

Abstract. A kind of non-overlapping domain decomposition preconditioner was proposed to
solve the systems generated by the plane wave least-squares (PWLS) method for discretization of
Helmholtz equation and Maxwell equations respectively in [13] and [14]. In this paper we introduce
overlapping variants of this kind of preconditioner and give some comparison among these domain
decomposition preconditioners. The main goal of this paper is to implement in parallel these
domain decomposition preconditioners for the system with large wave numbers. The numerical
results indicate that the preconditioners are highly scalable and are effective for solving Helmholtz
equation and Maxwell’s equations with large wave numbers.
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1. Introduction

The plane-wave method differs from the traditional finite-element method (FEM)
and the boundary-element method (BEM) in the sense that the basis functions are
chosen as exact solutions of the governing differential equation without boundary
conditions. This type of numerical method was first introduced to solve Helmholtz
equations and was then extended to solve Maxwell’s equations. Examples of this
approach include the discontinuous enrichment method [1, 9], the variational theory
of complex rays (VTCR) [21, 22], the ultra weak variational formulation (UWVF)
[3, 4, 16], the plane-wave discontinuous Galerkin (PWDG) method [10, 12, 26], and
the plane-wave least-squares (PWLS) method [20, 13, 14].

All methods described above fall into the class of Trefftz methods. An important
advantage of the PWLS method over the others is that the stiffness matrix gener-
ated by the PWLS method is Hermitian positive definite, so it is easier to construct
efficient preconditioners for this matrix. For example, a simple non-overlapping do-
main decomposition preconditioner for such stiffness matrix was constructed in [13]
and [14]. The numerical results indicate that the system with middle wave num-
bers can be solved rapidly by the preconditioned CG method with the proposed
preconditioner.

It is a difficult topic to construct an efficient preconditioner for Helmholtz equa-
tion or Maxwell’s equations with large wave numbers. In fact, the existing domain
decomposition methods (and multilevel methods) are inefficient to these equations
except that the sizes of the coarse meshes are chosen as O(1/ω) (see, for example,
[5, 8, 17, 25]), where ω denotes the wave number. It is clear that the restriction
on the coarse mesh size is fatal in applications. Recently a kinds of successive
preconditioners based on PML method are proposed to solve Helmholtz equations
with large wave numbers (see [6, 7]). It has been shown that such preconditioners
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possess the optimal convergence independent of the mesh sizes [6]. It is certain
that the results are most important advance in the solution method for Helmholtz
equations with large wave numbers.

In this paper we are mainly interested in the parallel implementation of domain
decomposition preconditioners for the systems generated by the PWLS method
for discretization of Helmholtz equation and Maxwell equations with large wave
numbers. Motivated by the non-overlapping domain decomposition preconditioner
in [13] and [14], we construct overlapping domain decomposition preconditioner for
such systems in the present paper. We give some comparison of iteration counts
and computing times spent in PCG method with the non-overlaping preconditioner
and the overlaping preconditioner. Numerical results indicate that the domain
decomposition preconditioner with small overlap is more effective than the others
when the wave number is large and the mesh size is small. In particular, we
implement in parallel the domain decomposition preconditioner with one element
overlap for solving the systems with large wave numbers, and we find that such
preconditioner is strongly scalable and is very effective, without the restriction that
the size of coarse meshes is O(1/ω).

The paper is organized as follows: In Section 2, we recall the proposed varia-
tional formulation for homogeneous Helmholtz equation and Maxwell’s equations.
In Section 3, we describe the plane wave discretization of the variational problem.
In Section 4, we construct domain decomposition preconditioners for the stiffness
matrix associated with the new variational problem. In Section 5, we address some
key issues in the parallel implementation of the domain decomposition precondi-
tioner in JASMIN framework. In Section 6, we report some numerical results to
confirm the effectiveness of the new preconditioner for solving the system with large
wave numbers.

2. Variational formulation for Helmholtz equation and Maxwell’s equa-
tions

In this section we recall the Helmholtz equation and second-order system of
Maxwell’s equations.

The considered variational formulation is based on a triangulation of the solution
domain. Suppose Ω is a bounded polyhedral domain in R

n (n = 2, 3). Let Ω be
divided into a partition in the sense that

Ω =

N
⋃

k=1

Ωk, Ωl

⋂

Ωj = ∅ for l 6= j.

Let Th denote the triangulation comprising the elements {Ωk}, where h is the
meshwidth of the triangulation. Define

Γlj = ∂Ωl

⋂

∂Ωj for l 6= j

and

γk = Ωk

⋂

∂Ω (k = 1, . . . , N), γ =
N
⋃

k=1

γk.

2.1. The case of Helmholtz equation. Consider Helmholtz equations which is
formalized, normalizing the wave’s velocity to 1, by

{

−∆u− ω2u = 0 in Ω,
(∂n + iω)u = g on γ.

(1)

The outer normal derivative is referred to by ∂n and the angular frequency by ω.


