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Abstract. This work introduces novel unconditionally stable operator splitting methods for
solving the time dependent nonlinear Poisson-Boltzmann (NPB) equation for the electrostatic
analysis of solvated biomolecules. In a pseudo-transient continuation solution of the NPB equation,
the nonlinear term is analytically integrated, so that the difficulties in direct treatment of the
strong nonlinearity can be bypassed. However, in a pseudo-time NPB computation, the use of
large time increments is necessary to reach the steady state efficiently. The existing alternating
direction implicit (ADI) methods for the transient NPB equation are known to be conditionally
stable, although being fully implicit. To overcome this difficulty, we propose several new operator
splitting schemes, in both multiplicative and additive styles, including locally one-dimensional
(LOD) schemes and additive operator splitting (AOS) schemes. The proposed schemes become
much more stable than the ADI methods, and some of them are indeed unconditionally stable
in dealing with solvated proteins with source singularities and non-smooth solutions. By using
finite differences in space and implicit integrations in time, the numerical orders of the proposed
schemes are found to be one in both space and time. Nevertheless, the precision in calculating
the electrostatic free energy is low, unless a small time increment is used. Further accuracy
improvements are thus considered, through constructing a Richardson extrapolation procedure
and a tailored recovery scheme in treating the vacuum case. After acceleration, the optimized
LOD method can produce a reliable energy estimate by integrating for a small and fixed number
of time steps. Since one only needs to solve a tridiagonal matrix in each one dimensional subsystem,
the overall computation is very efficient. The unconditionally stable LOD method scales linearly
with respect to the number of atoms in the protein studies, and is over 20 times faster than the
conditionally stable ADI methods.
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1. Introduction

Analysis of the underlying biomolecular solvation is critical when carrying out
quantitative descriptions of various important biological processes at the atomic
level, such as protein folding and protein ligand bonding, DNA recognition, tran-
scription, and translation. From a biological perspective, solvation analysis is
concerned with interactions between a solute macromolecule and surrounding sol-
vent ions. From a mathematical perspective, these solute-solvent interactions may
be represented via solvation energies with contributions from polar and nonpolar
sources. The polar portion arises from electrostatic interactions, which may be rep-
resented with the Poisson-Boltzmann (PB) model [6, 14]. The PB model provides
a framework by which to model the distribution of electrostatic potential along the
surface of a solute macromolecule within a surrounding solvent with a particular
ionic concentration.
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Table 1. Acronyms used in this paper.

ADI alternating direction implicit LOD locally one-dimensional
AOS additive operator splitting IE implicit Euler
CFL Courant-Friedrich-Lewy NPB nonlinear Poisson Boltzmann
CN Crank-Nicolson PB Poisson Boltzmann
FFT fast Fourier transform RE Richardson extrapolation
MAOS multiplicative-additive operator splitting

In the PB model, the PB equation governing electrostatic potentials takes the
form of a nonlinear elliptic equation on multiple domains with discontinuous di-
electric coefficients across the molecular surface or solute-solvent interface [3, 4].
The PB equation cannot be solved analytically for molecules with complex geome-
tries, only admitting analytical solutions for shapes such as spheres or rods [12, 16].
However, solving the PB equation numerically also presents significant difficulties
because of the discontinuous dielectric coefficients, singularities in the source-term,
non-smoothness of the solution, and significant nonlinearity when strong ionic ef-
fects are present.

Recently, a pseudo-transient continuation approach has been proposed for solving
the nonlinear PB (NPB) equation [27, 28, 34], which creates a different way to tackle
the nonlinear term of the NPB equation. In classical finite difference and finite
element solutions of the NPB equation, a nonlinear algebraic system is typically
formed through the discretization of the boundary value problem. A nonlinear
relaxation method [15, 24] or inexact Newton method [13] can be employed to solve
such a nonlinear system. In the pseudo-transient continuation approach [27, 28, 34],
a pseudo-time derivative is added to the NPB equation so that one solves an initial-
boundary value problem now. The steady state solution of this problem gives rise
to the solution to the original boundary value problem. Numerically, it is desired
that a large time step can be used so that the steady state can be computed quickly.
Thus, the efficiency of a pseudo-time NPB solver is directly related to its stability,
which critically depends on the nonlinear term of the NPB equation – a hyperbolic
sine function that could be exponentially large.

Several time stepping schemes have been considered for solving the time depen-
dent NPB equation. The explicit Euler solution is straightforward, but invokes a
severe stability constraint [34]. Implicit time integrations have also been studied
[27, 28], for which care has to be exercised in handling the nonlinear term. In [27],
a linearization technique based on the first order Taylor expansion is proposed so
that a linear system is formed at each step of the implicit Euler integration. This
linearization essentially evaluates the nonlinear term at the previous time instant.
Similarly, by treating the nonlinear term explicitly, a modified alternating direction
implicit (ADI) method has been introduced in [28]. Since the Thomas algorithm
[21] can be employed to solve the tridiagonal finite difference systems in this time
splitting method, the efficiency is greatly improved. However, a very large time
increment is still prohibited in these methods, because these implicit schemes are
of semi-implicit nature.

More recently, we have successfully developed two fully-implicit ADI schemes
[11, 35] for solving the time dependent NPB equation. The success lies in an ana-
lytical integration of the nonlinear term, and the use of a time splitting framework.
This completely suppresses the nonlinear instability, so that these fully-implicit ADI


