ASYMPTOTIC BEHAVIOR OF GLOBAL CLASSICAL SOLUTIONS TO A KIND OF MIXED INITIAL-BOUNDARY VALUE PROBLEM

Zhang Jiaguo

(Institute of Mathematics, Fudan University, Shanghai 200433, China) (E-mail: justajaguar@163.com) (Received Apr. 6, 2006)

Abstract We study the asymptotic behavior of global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Based on the existence results on the global classical solutions given by Li and Wang in [1] and employing the method of Kong and Yang in [2], we prove that, when t tends to infinity, the solution approaches a combination of C^1 travelling wave solutions at the algebraic rate $(1+t)^{-\mu}$, provided that the initial data decay at the rate $(1+x)^{-(1+\mu)}$ as x tends to $+\infty$ and the boundary data decay at the rate $(1+t)^{-(1+\mu)}$ as t tends to $+\infty$, where μ is a positive constant.

Key Words Quasilinear hyperbolic system, Global classical solution, Asymptotic behavior, Weak linear degeneracy, Normalized coordinates, Travelling wave.

2000 MR Subject Classification 37D99.

Chinese Library Classification 0175.22, 0175.27.

1. Introduction and Main Result

Consider the following first order quasilinear hyperbolic system

$$\frac{\partial u}{\partial t} + A(u)\frac{\partial u}{\partial x} = 0, (1.1)$$

where $u = (u_1, \dots, u_n)^T$ is the unknown vector function of (t, x) and A(u) is an $n \times n$ matrix with suitably smooth elements $a_{ij}(u)(i, j = 1, \dots, n)$.

By the definition of hyperbolicity, for any given u on the domain under consideration, $A_{ij}(u)$ has n real eigenvalues, $\lambda_1(u), \dots, \lambda_n(u)$ and a complete set of left (resp. right) eigenvectors. For $i = 1, \dots, n$, let $l_i(u) = (l_{i1}(u), \dots, l_{in}(u))$ (resp. $r_i(u) = (r_{i1}(u), \dots, r_{in}(u))^T$) be a left (resp. right) eigenvector corresponding to $\lambda_i(u)$:

$$l_i(u)A(u) = \lambda_i(u)l_i(u), \tag{1.2}$$

and

$$A(u)r_i(u) = \lambda_i(u)r_i(u). \tag{1.3}$$

No.2

We have

$$\det|l_{ij}(u)| \neq 0 \quad (resp. \det|r_{ij}(u)| \neq 0). \tag{1.4}$$

Without loss of generality, we suppose that on the domain under consideration

$$l_i(u)r_j(u) = \delta_{ij} \qquad (i, j = 1, \cdots, n), \tag{1.5}$$

where δ_{ij} stands for the Kronecker's symbol .

We suppose that all $\lambda_i(u)$, $l_{ij}(u)$, $r_{ij}(u)$ $(i, j = 1, \dots, n)$ have the same regularity as $a_{ij}(u)(i, j = 1, \dots, n)$.

In this paper, we suppose that the eigenvalues satisfy

$$\lambda_1(0), \dots, \lambda_m(0) < 0 < \lambda_{m+1}(0) < \dots < \lambda_n(0).$$
 (1.6)

On the domain

$$D = \{(t, x) \mid t \ge 0, x \ge 0\},\tag{1.7}$$

we consider the mixed initial-boundary value problem for the system (1.1) with the initial condition

$$t = 0: \quad u = \varphi(x) \qquad (x \ge 0), \tag{1.8}$$

and the boundary condition

$$x = 0 : v_s = f_s(\alpha(t), v_1, \dots, v_m) + h_s(t) \quad (s = m + 1, \dots, n),$$
 (1.9)

in which

$$v_i(u) = l_i(u)u \quad (i, = 1, \dots, n),$$
 (1.10)

and

$$\alpha(t) = (\alpha_1(t), \dots, \alpha_k(t)). \tag{1.11}$$

Without loss of generality, we suppose that

$$f_s(\alpha(t), 0, \dots, 0) \equiv 0 \qquad (s = m + 1, \dots, n).$$
 (1.12)

Remark 1.1: In a neighborhood of u = 0, the boundary condition (1.9) takes the same form under any possibly different choice of the left eigenvectors.(see [1])

For the Cauchy problem, the following result was proved by Kong and Yang in [2]:

Theorem A Under the assumptions of above, there exists a unique C^1 vectorvalued function $\Phi(x) = (\Phi_1(x), \dots, \Phi_n(x))^T$ such that in the normalized coordinates (see Section 2.1)

$$\left| u(t,x) - \sum_{i=1}^{n} \Phi_i(x - \lambda_i(0)t)e_i \right| \le K\theta^2 (1+t)^{-\mu}, \tag{1.13}$$

where K stands for a positive constant independent of (t, x) and θ , and $\lambda_1(0) < \lambda_2(0) < \cdots < \lambda_n(0)$.