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Abstract We present a simple proof for the uniformization theorem on Z-sphere
by methods of elliptic partial differential equations.
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Let 5%, R? and D? denote the standard Z-sphere, 2-plane, and unit 2-disk, respec-
tively. The uniformization theorem states that

Any closed Rieman surfoce M with Fuler characteristics y is conformally covered
by either St R? or D%, according to x > 0,=10, or <0.

For the case x > 0, M must be diffeomorphic to 5%, and we can translate (through
the one-to-one correspondance between the conformal structures and the conformal
classes of Riemannian metrics) the above statement to

Theorem A Given any Riemannian metric g on 5%, there ezists o conformal
diffeornorphism [ - (52,90} — (5%,g), where go denotes the standard Riemannian
metric with congtant curvature 1, and the conformalily of f means f*qg = e'go for
some smooth function u on S°.

A proof of Theorem A can be found in [1], Chap.3, Theorem 3.1.1, where the author
applies a variational approach to the problem,

It is also well known that Theorem A is equivalent to the following (cf.[2], pp-6-T)

Theorem B Given any Riemannian metric ¢ on S°, there exists o conformal
metric g’ = e%g with constant Gaussian curvature 1.

Indeed, the equivalence of Theorems A and B is implied by the following well-known
result in Riemannian geometry, which we may call “Geometric Uniformization”.

Theorem C Let M be an m-dimensional, simply connnected, complete, Riemnan-
nian menifold with constant sechional curvature K =1,0, or =1. Then M is isometric
to the standard sphere 8™, the Euclidean space R™, or the hyperbolic space H™. |

Now, assuming Theorem A is true, it is straightforward to see that (f 1y gy is
a conformal metric claimed in Theorem B. So Theorem B holds true. On the other
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hand, if Theorem B is true, then by Theorem C, (52, e'g) is isometric to {S2, go), Le.
there exists a diffeomorphism  such that k*gy = eg. It is clear then that f=h1
15 the conformal diffeomorphism claimed in Theorem A. Thus Theorems A and B are
equivalent.
It is known that to prove Theorem B, one needs only to find a solution to the
following elliptic equation.
A — 2k + 2" =) (1)

where A is the Laplace operator with respect to the metrie g and kg, is the Gaussian
curvature of g. Actually, the Gaussian curvature k of e*g is given by (see [3])

1
ko= (};5, - Eiuu) (2)

The existence of a solution of (1) was proved by R.Hamilton ([4]} and B. Chow ([3]}.
They used the so-called Ricei flow, which, in dimension two, is essentially a nonlinear
parabolic equation for a single function. They proved that the solutions of the Ricci
flow exist for all time and converges as time goes to infinity to the solutions of (1).

It is remarkable that for the equation (1) on 52, simple as it is, there has not been an
existence proof by simple elliptic methods. Even after the Yamabe problem, which can
be viewed as the higher dimensional extension of Theorem B, was completely resolved
by R.Schoen ([6]), a proof comparable to Schoen’s for Theorem B is still lacking. It is
the aim of this note to present such a proof. In fact, the follwing proof was discovered
by this anthor early in 1988, and was supposed to publish in a book. Unfortunately’
the publication of that book was cancelled later.

Proof of Theorem B Without loss of generality we may assume that the total
area of the metric ¢ is 4. Choose any point P € $2, we first solve the equation

Ap—2k,=0 on 5*\{P} (3)

Let & be the Green’s function ([3], Chap.4) on S% with pole at P. Then ( satisfies
the equation

AG -1 = dxbp (4)
where &p 1s the delta measure at P. Next, let v be a smooth function that solves
Av =2k, — 2

The existence of such a v is because the mean value of the right hand side of the above
equation equals zero, a fact guaranteed by the Gauss-Bonnet formula

o Faddy = 4 (5)

Now, letting v = 2G + v we see ¢ solves the equation (3). By (2), the metric g; = e¥g
has constant curvature zero. Moreover, the asymptotic behaviour of G at P (see [3])




