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Abstract Structure of least-energy solutions to singularly perturbed semilinear
Dirichlet problem e*Au — u® + g(u) = 0 in Qu = 0 on 80,02 C'R" a bounded
smooth domain, is precisely studied as ¢ — 0%, for 0 < o < 1 and a superlinear,
subcritical nonlinearity g{u). It is shown that there are many least-energy solutions
for the problem and they are spike-layer solutions. Moreover, the measure of each
spike-layer is estimated as e — 0%,
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1. Introduction

In this paper, we shall study least-energy solutions of the following singularly per-
turbed semilinear Dirichlet problem

fAu—u*4+uP =0, u=0, inf, v=0o0nd0 (1:1)

where £ is a bounded smooth domain in RY(N > 2),e > 0 is a constant, 0 < a < 1,p
= N+12 ;
satisfies 1 < p < o for N > 3and 1 < p < oo for N = 2. We are especially

interested in the properties of the solutions as £ tends to 0. In particular, we shall
establish the existence of least-energy solutions to (1.1), and show that they are spike-
layer solutions. We also determine the location of the peak as well as the profile of the
spike.

The equation (1.1) with @ = 1 is known as the stationary equation of the Keller-
Segal system in chemotaxis (see [1]). It can also be seen as the limiting stationary
equatoin of the so-called Gierer-Meinhardt system in biological pattern formation, see
[2] for more details. In the pioneering papers of [1,3,4], Lin, Ni and Takagi established
the existence of least-energy solutions to the problem

d
Ay —u+1F =0, u>0 inQ, §=ﬂun5£1 (1.2)
e
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and showed that for £ sufficiently small the least-energy solution has only one local
maximum point P and P. € 8f2. Moreover, H(F.) — }1&5{% H(P) as ¢ — 0, where
H(F) iz the mean curvature of P at 802, Note that such results also hold for more
general nonlinearities than that of (1.2) (see [3,4]). Some further results for (1.2) can be
found in [2,5,6] and the references therein. In [7], Ni and Wei established the existence
of least-energy solutions to (1.1) with @ = 1. They obtained that for & sufficiently small,
the least-energy solution u, of (1.1) (with & = 1) has at most one local maximum and
it is achieved at exactly one point P, € €. Moreover, u.(-+F.) — 0in C _(1— F:\{0})
where 2 — P. = {x — P.|x € 81},

d( P, 7) — max d(P,92) ase — 0
PeQ

To obtain all the rhentioned results above, the authors used the fact that the prohlem
Aw—w+w? =0, w>0in RY, w(z) = 0as |z| = = (1.3)

has a unique positive (radial} solution w(|z|) which decays exponentially as |z| — co.
Meanwhile, in [8,9], the authors studied the problem

—e?Au=f(u)in 2, ©=0on N (1.4)

with f € C1(0, co)NCP([0,00))(0 < & < 1), f(0) = 0, f'{0) = —m < 0 and f changing
sign many times in (0,00}, When £ is a convex domain, they found a positive small
solution u, of (1.4), which has properties similar to that of the least-energy solution
obtained in [7]. Further results for (1.4) can also be found in [10-14] and the references
therein.
In this paper we are mainly interested in the properties of least-energy solutions to
the problem
2 An — u® + glu)=0, e 20in 2, u=10o0n di (1.5)

where 0 < o < 1 and g(s) satisfies the conditions similar to that in [3,4,7]. That is,
g: R — R is of class C1(R) and satisfies the following conditions:

(g1) g(s) =0 for s < 0;

(g2) g(s)/s is increasing for s > 0 and SEng{s}js = 400, while g(s) = O(t?) as
t — 0 with 3 > 1;

(ga) g(5) = O(s®) as § — +oo, where 1 < p < (N+2)/(N—-2)if N > 3 and
1{p{+mifN:§; -

(g4) If G(s) = f g(1)dt, then there exists a constant § € (0,1/2) such that G(s) <
Bag(s) for & = 0. : ;

Define f(s) := g(s) — s and F(s) = '/[; f(t)dt. It is easily seen that f satisfies

that fl{0) = 0-and li%1+ f'(s) = —oo. Moreover, f |F(t)|~*/%dt < oo for any s > 0.
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