REMARKS ON THE SHAPE OF LEAST-ENERGY SOLUTIONS TO A SEMILINEAR DIRICHLET PROBLEM

Guo Zongming

(Department of Mathematics, Henan Normal University, Xinxiang 453002, China) (Received Apr. 4, 2001)

Abstract Structure of least-energy solutions to singularly perturbed semilinear Dirichlet problem $\varepsilon^2 \Delta u - u^{\alpha} + g(u) = 0$ in $\Omega, u = 0$ on $\partial \Omega, \Omega \subset \mathbb{R}^N$ a bounded smooth domain, is precisely studied as $\varepsilon \to 0^+$, for $0 < \alpha < 1$ and a superlinear, subcritical nonlinearity g(u). It is shown that there are many least-energy solutions for the problem and they are spike-layer solutions. Moreover, the measure of each spike-layer is estimated as $\varepsilon \to 0^+$.

Key Words Least-energy solutions; spike-layer solutions; singularly perturbed semilinear Dirichlet problem; nontrivial nonnegative solutions.

1991 MR Subject Classification 35J70, 35J25, 35B50. Chinese Library Classification 0175.25.

1. Introduction

In this paper, we shall study least-energy solutions of the following singularly perturbed semilinear Dirichlet problem

$$\varepsilon^2 \Delta u - u^\alpha + u^p = 0, \quad u \ge 0, \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$
 (1.1)

where Ω is a bounded smooth domain in $\mathbf{R}^N(N \geq 2)$, $\varepsilon > 0$ is a constant, $0 < \alpha < 1, p$ satisfies $1 for <math>N \geq 3$ and 1 for <math>N = 2. We are especially interested in the properties of the solutions as ε tends to 0. In particular, we shall establish the existence of least-energy solutions to (1.1), and show that they are *spike-layer* solutions. We also determine the location of the peak as well as the profile of the spike.

The equation (1.1) with $\alpha = 1$ is known as the stationary equation of the Keller-Segal system in chemotaxis (see [1]). It can also be seen as the limiting stationary equation of the so-called Gierer-Meinhardt system in biological pattern formation, see [2] for more details. In the pioneering papers of [1,3,4], Lin, Ni and Takagi established the existence of least-energy solutions to the problem

$$\varepsilon^2 \Delta u - u + u^p = 0, \quad u > 0 \quad \text{in } \Omega, \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega$$
 (1.2)

and showed that for ε sufficiently small the least-energy solution has only one local maximum point P_{ε} and $P_{\varepsilon} \in \partial \Omega$. Moreover, $H(P_{\varepsilon}) \to \max_{P \in \partial \Omega} H(P)$ as $\varepsilon \to 0$, where H(P) is the mean curvature of P at $\partial \Omega$. Note that such results also hold for more general nonlinearities than that of (1.2) (see [3,4]). Some further results for (1.2) can be found in [2,5,6] and the references therein. In [7], Ni and Wei established the existence of least-energy solutions to (1.1) with $\alpha = 1$. They obtained that for ε sufficiently small, the least-energy solution u_{ε} of (1.1) (with $\alpha = 1$) has at most one local maximum and it is achieved at exactly one point $P_{\varepsilon} \in \Omega$. Moreover, $u_{\varepsilon}(\cdot + P_{\varepsilon}) \to 0$ in $C^1_{loc}(\Omega - P_{\varepsilon} \setminus \{0\})$ where $\Omega - P_{\varepsilon} = \{x - P_{\varepsilon} | x \in \Omega\}$,

$$d(P_{\varepsilon}, \partial\Omega) \to \max_{P \in \Omega} d(P, \partial\Omega)$$
 as $\varepsilon \to 0$

To obtain all the mentioned results above, the authors used the fact that the problem

$$\Delta w - w + w^p = 0$$
, $w > 0$ in \mathbb{R}^N , $w(z) \to 0$ as $|z| \to \infty$ (1.3)

has a unique positive (radial) solution w(|z|) which decays exponentially as $|z| \to \infty$. Meanwhile, in [8,9], the authors studied the problem

$$-\varepsilon^2 \Delta u = f(u) \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega$$
 (1.4)

with $f \in C^{1+\sigma}(0,\infty) \cap C^0([0,\infty))(0 < \sigma < 1)$, f(0) = 0, f'(0) = -m < 0 and f changing sign many times in $(0,\infty)$. When Ω is a convex domain, they found a positive small solution u_{ε} of (1.4), which has properties similar to that of the least-energy solution obtained in [7]. Further results for (1.4) can also be found in [10–14] and the references therein.

In this paper we are mainly interested in the properties of least-energy solutions to the problem

$$\varepsilon^2 \Delta u - u^\alpha + g(u) = 0, \ u \ge 0 \text{ in } \Omega, \ u = 0 \text{ on } \partial\Omega$$
 (1.5)

where $0 < \alpha < 1$ and g(s) satisfies the conditions similar to that in [3,4,7]. That is, $g: \mathbf{R} \to \mathbf{R}$ is of class $C^1(\mathbf{R})$ and satisfies the following conditions:

- (g_1) $g(s) \equiv 0$ for $s \leq 0$;
- (g_2) g(s)/s is increasing for s > 0 and $\lim_{s \to +\infty} g(s)/s = +\infty$, while $g(s) = O(t^{\beta})$ as $t \to 0$ with $\beta > 1$;
- (g_3) $g(s) = O(s^p)$ as $s \to +\infty$, where $1 if <math>N \ge 3$ and 1 if <math>N = 2;
- (g_4) If $G(s) = \int_0^s g(t)dt$, then there exists a constant $\theta \in (0, 1/2)$ such that $G(s) \le \theta s g(s)$ for $s \ge 0$.

Define $f(s) := g(s) - s^{\alpha}$ and $F(s) = \int_0^s f(t)dt$. It is easily seen that f satisfies that f(0) = 0 and $\lim_{s \to 0^+} f'(s) = -\infty$. Moreover, $\int_0^s |F(t)|^{-1/2} dt < \infty$ for any s > 0.