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Abstract With the use of Hélder Zygmund space techniques, lacal regular solu-
tions to the Navier-Stokes equations in B® are shown to exist when the initial data are
in the space
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1. Introduction

Consider the incompressible viscous fluid motion governed by the Navier-Stokes
equations in B, n = 2.
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with unknown velocity u = (uy(z,t), - -+, un(z,t)) and unknown pressure T = w(x, t).
Here ¥ = the gradient (&, -+, 8,) and A = the Laplacian LT T

Mathematical theory of the Navier-Stokes equations stems from the poineering work
of Leray [1] in 1934, where the existence of a global weak solution was established
when the initial velocity a € Lo(R™)™. The regularity of this weak solution, however,
still remains foundamentally unknown. To understand the regularity problem, Fabes,
Jones and Riviere [2] obtained the local existence of regular solutions with initial data
in Ly(fi")" withn < p < o0 and the global existence of regular solutions with small
initial data in Le(RP)" N L (RM)" with 1 S 7 < n. < p < oo. This result has been
extensively studied by many authors. For example, [3-7] and [8-9] are concerned with
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regular solutions when the initial velocity is in the Lebesgue space L,(R™}" with p < oo
and the Lorentz space L, o (R")", respectively. It has become clear than L,{F™)" is a
critical space in obtaining regularity selutions in the following sense: regular solution
exists locally when the initial velocity a € L,(R™)® with n < p < oo, small regular
solution exists globally when a € L, (RE®)*, and no regular solution is found to exist
when a € L,(R™)"® with p < n no matter how small the ||a|| s is. One can also refer
to [10-14] for stability study on fluid motions and [15-18] for bifurcation analysis of
Navier-5Stokes fows, |

The purpose of this paper is to present a new approach showing the local existence of
regular solutions when the initial data are in a new function space containing L,(R™)"®
with n < p < oo.

To state our result, we denote by F the Fourier transform in ™ and set the Riesz
potential (—A)Y? = FTYEPF, Moreover, we introduce the Hilder Zyegmund space
GRS
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where §'{R™) denotes the dual space of S(R"), the Schwartz space of repidly decreasing
smooth scalar functions.

The main result of this paper reads as follows:

Theorem 1.1 Letn>2,0< B <1, (-A) P2 e C*E™" and V- a = 0 in the
sense of distribution. Then there ezists a constant T > 0 such that Eq (1) admits a
reqular selufion u safisfying

(—A) 0y € €\ ([0, T]; CY(R™™)

for0 < a<1
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(Ll
(=) "5 2u(8)[leo + 72 u(@)| ., + tllw(t)]lcr-2 € Loo(D, T)

where O -, denotes the continuity in the weak—= topology.

Theorem 1.1 i1s to be proved in Section 2 based on elementary properties of the
Holder Zygmund spaces described in Section 2.

Let us mention that Giga, Inui and Matsui [19] recently obtained the local existence
of regular solutions with initial data in Loo(RE™)® together with its subspaces. However,
our study ion is rather different from those of [19] due to the fact that Theorem 1.1
shows the sharp regularity estimate in Holder Zygmund spaces and the initial data

a € {a € S'(RY|(-A)"*2a ¢ C°(R™)"}

which contains L,(RE")" with p = n/3, by the homogeneily and the Sobolev imbedding
theorem (See [20]). '




