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Abstract In this paper, we study the lower bounds problem for the existence time
of solutions to the different massive Dirac-Klein-Gordon equations and with different
massive Klein-Gordon equations, in one space dimension. for weakly decaying Cauchy
dala, of size £, The results assert that the existence time is (almost) larger than =4,
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1. Introduction

One of the important nonlinear interactions encountered in field theory is the fol-
lowing Dirac-Klein-Gordon equations coupled through a Yakawa interaction,

{ —iy* I + My = $Vep (1.1)

O¢ + m%p = igyhy"y 4 + 915y

where V' is a complex 4 x 4 matrix such that V% = 4%V, M and m are nonnegative
real constants, and gg and gy are real constants. The Dirac matrices oty =00, 12, 8.8,
are defined by
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such that

where
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are the Pauli matrices. + is a complex 4-dimensional vectors (called spinors [1]),
denotes the conjugate transpose of 4, and ¢ is a real scalar ficld. This system comes
from physics, the fundamental example is the pseudoscalar Yukawa model of nuclear
forces.

There exists a global solution for (1.1) with small, smooth initial data, decaying
rapidly enough at infinity initial data in the following cases:

For three space dimensions case, if the mass is not zero (M # 0, m # 0), the system
(1.1} is equivalent to a system of Klein-Gordon equations with quadratic nonlinearities
studied by S. Klainerman [2]. The key point is the L=(R3) norm decay as 1 Pty
£ = . For one space dimension case, it was studied by J. M. Chadam [3].

If the massive M = m = 0, the system (1.1) is comformal invarience and the
existence of the global solution is established by Y. Choquet-Briuhat [4] (see [5] and [6]
alzo).

If the massive M # 0, m = 0, the global Cauchy problem is well posed, proved by
A. Bachelot [7], and it is also true if the nonlinearities satisfy some algebraic condi-
tions related to the Lorentz invariance, the null condition and the compatibility of a
sesquilinear form with the Dirac system.

If we use weakly decaying condition instead of rapidly decaying one in Cauchy data,
the only result for (1.1) with special case M = m = 1 was established by the author in
[4].

Another of important equations is Klein-Gordon equations.

For Klein-Gordon equations:

{ Owy + miuy = F (u, v, " (1.2)

Lisa + m%i‘ﬁg = Fylu,u’, 'EL”}

where my and mg are two massive constants, u = (u(z,t), uz(z, t)) is a function in
R x RY w' (resp. u") is the derivatives of Order 1 (resp. 2) of u with respect to their
arguments, & = (F}, Fy) is a regular function vanishing of second order at O, and F is
linear in «”, and O is a d’Alembert operator. For this equation, when d > 3, Klainerman
[9] and Shatah [10] have proved that there exists a global solution of the Cauchy problem
to (1.2) for the above condition’s initial data. For o = 2 (resp. 1), Hormander, in his
monograph [11], has proved that the Cauchy problem with data in (°°, of size g, admits
a solution in [T, T:] with 1113Lialf|:5 logT.) = +co (resp. liIE'ﬂ _ES‘LE'E-._H’T_} = +4c2.), and
there is a conjecture for dimensional 2, the solution exists globally. The conjecture has
been proved by Geogiev-Popivanov [12] for special nonlinearities, and then, Kosecki
[13], Simon and Taflin [14], and Ozawa, Tsutaya and Tsutsumi [15] with null condition
nonlinearities.

I the condition of initial data is replaced by weakly decaying, of size £, the only
result that can be found is obtained by Delort in [16] for one dimension, and in [17]
for multidimension with periodic initial data. However, we mainly deal with the first
problem here, for the second, one can extend the conclusion to the different massive




