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Abstract In this paper, we investizate the asymptotic behavior of solution to a
model system in linearly viscous materials with temperature-dependent viscosity,
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1. Introduction

~ In this paper we investigate the asymptotic behavior of solution to a system of
partial differential equations for a fairly zeneral class of linearly viscous materials. The
balance laws of mass, momentum and energy for one-dimensional case (in Lagranglan
form) are
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where u is the specific volume, © is the velocity, & is the absolute temperature, p is the
pressure, e is the internal energy, u and k denote the coefficients of viscosity and heat
conductivity respectively.

The system is supplemented with the equations of state

€= e(@,u), p=p,u (1.4)

where e(#, 1) and p(8, u) are chosen so as to satisfy the second law of thermodynamics.
When the material is an ideal linearly viscous gas with constant viscosity and heat
conductivity, e.g.

e=Cy8, p= RE, p=const >0, k=const>0 (1.5)
1 .
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the initial boundary wvalue preblems for (1.1)-(1.3) were studied by Kazhikhov [1].
Kazhikhov and Shelukhin [2], Nagasawa [3]. Their method depends crucially upon the
one-dimensional form of equations and the specific form of the constitutive relations
(1.5). However, under very high temperature and density the relations {1.5) become
nnsuitable since the heat conductivity and viscosity vary greatly with the temperature
ancd censity.

The global existence and asymptotic behavior for the system (1.1)-(1.4) have been
established only for special forms of function p(f,u) and E(#,«). For solid-like ther-
moviscoelastic materials, we refer to Dafermos [4], Dafermos and Hsiao [5] for global
existence and to Hslao and Luo [6] for large time behavior of solutions. For the ther-
moviscoelastic system in shape memory alloys, W. Shen, 5. Zheng and P. Zhu [7], or
P. Zhu [8] proved the global existence and asymptotic behavior of weak solutions. For
the heat conductive real gas the results of [1, 2] were generalized by Kawchl [9].

The main restriction in the above mentioned papers 1s that g does not depend on the
temperature. This is certainly a restriction which is not physically motivated, because
in general the viscosity does vary with temperature. IFrom the mathematical point of
view, the dependence of the viscosity on temperature is also very interesting because
a more serious nonlinearity is involved. More precisely, one can formally seperate
parabolic system for v and & from the first order differential equation for u. The
dependence of u and k only on u extends the nonlinearity of the whole system (1.1}~
(1.4} but it does not change the nonlinearity of the seperated parabolic system or the
cquation for u. The dependence of g and £ on & changes the situation very much and
the first dependence “worsens” both of the parabolic equations.

It should be cbserved that Dafermos and Hsiao [10] were first to consider some
initial boundary value problems for the equations obtained from the system {1.1)-(1.3)
when u=const, £ = p = 0, but the viscosity varies with the temperature. They have
studied the problem provided by adiabatic rectilinear shearing flow of an incompressible
viscous fluid between two parallel plates.

[n this paper we consider a model system which can be called the generalization of
Burger’'s equation of a viscous compressible fluid (ef. [11, 12]) for the heat conductive

w — vy =0 (1.6)
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The function p(@) is typically decreasing in the case of liquids., We consider the function
of viscosity with the following properties:

u(s) € CA(RY),R* = (v € Fyz 2 0) (1.9)




