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Abstract In this paper, the global attractor, exponential attractor and fiat iner-
tial manifold are obtained for a nonlinear heam equation with strong structural damp-
ing. '
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1. Introduction

In this paper we consider the following initial boundary value problem for a non-
lingar heam equation, which is introduced in [1],

wg + e ®u + §A%y, — {.::, -+ bj;? |¥ul?dz + Q[L [?fca?ztf]lrimj 2fm+ﬁj+l}ﬂu

=f zet>0 ' (1)
Ulagn = Aulan =0, >0 (2)
u(z,0) = up(z), ue(z,0) = uy(z), zen (3)

where u(z,i), ¢ > 0, z € ©, is the transverse deflection of the beam. O 1s a bounded
open set in R™. All the parameters @, 6,0 and ¢ are positive constants, but a € R
The term §A%u, represents strong structural damping, [a+b]|Vu||?|Au is the tension of
extensibility, and the last term on the left hand side is known as Balakrishnan-Taylor
damping, @ satisfies 0 < g < 1/2, and m > 0 is an integer. The function f is an
external input. The concerned boundary conditions correspond to hinged boundary.
The global dynamics which we are concerned are the existence of the global attractor,
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exponential attractor and flat inertial manifold for (1)-(3). The case was studied in [2]
by Y. You when n =1, m = 0, 8 = (, the case was studied in [3] by Y. You and M.
Taboada when n = 1 and the term §A%w, is replaced by dAv,. In [2], [3], the authors
did not give the existence of the global attractor and exponential attractor. In [4], A.
Eden and A.J. Milani considered the global attractor, exponential attractor and flat
inertial manifold for the following equation
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1]

where £, 2 and 3 are positive constants. There, they use a-contraction map to obtain the
global attractor. In this paper, we consider the problem of (1)-(3) in high dimensional
case.

Let H = L3(), ¥V = H2(Q) n H{Q), ¥ = D{A) = {u € H{Q),u,Au c BHD],
and By =V = H, By =Y =V, we consider the solution {u{f), we(8)} = S{t}{ug,u;}
with values either in Fy, B, The global existence of such solutions is assured by

Theorem 1 Assume {ug,uy+ € By and f € C(RT; H). Then there exists a unique
solution u of (1)-(2), such that {u,u} € C(RT; Ey). If in addition {ug,u1} € B and
f € CYR*t; H), then {u,u;} € C(R*; By).

Proof It is similar to the proof of [3], we omit it here,

This paper iz organised as follows: In Section 2 and Section 3, we give the existence
of a bounded absorbing set for S(i) rﬂp-:—*ctivpl}f in By and E4; in Section 4, we use the
method of decomposition for operator S(t) ([6]) to prove the existence of a compact
global attractor in Ey for S(t); in Section & and Section 6, we give the existence of
exponential attractor and inertial manifold for (1)-(3).

2. Absorbing Sets in Fy

We shall denote by | - |p and (-, ) the norm and inner product in H.
Multiplying (1) in & by uy, we obtain
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p (|u.a,|u. + | Aulg + ﬂ{ﬂ' + b Vul3) )

2m+f+1) -

+ 28| Ay +2q(2 dﬁlvulﬂ) = 2(f, u) (4)

Since
el < Al
where )y is the first eigenvalue of (—A)? with (2), we have
1
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