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Abstract We establish a c....parameter family of Harnack inequalities connecting
Li and Yau's differential Harnack inequality for the heat equation to Hamilton’s Harnack
inequality for the Ricei flow on a 2-dimensional manifold with positive scalar curvature.
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In this paper we show that on a closed 2-dimensional Riemannian manifold with
positive scalar curvature there is a one-parameter family of differential Harnack in-
equalities joining the Li-Yau Harnack inequality [1] for solutions of the heat equation
to the linear Harnack inequality of Hamilton and the author [2] for the Ricci flow,
which extends Hamilton’s Harnack inequality [3] for the Ricci flow on surfaces. For
some further works on differential Harnack inequalities for parabolic equations arising
in differential geometry the reader may consult the papers by Andrews [4], Cao (5], Cao
and Yau [6], the author [7], Chu and the author [8, 9], Hamilton [10,11}, Hamilton and
Yau [12], and Yau [13, 14].

Let M* denote a closed 2-dimensional manifold, g(f) a time-dependent Riemannian
metric on M, and (¢} its scalar curvature. We say that g(t) is a solution to the ‘scaled’
Ricci flow if 5

7791 = —2e8; = —eRgy; (1)

where the only difference between this and the usual Ricci flow is the non-negative
constant £ in front of the right-hand-side. Let u be a positive solution to the linear
parabolic equation

d
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where the Laplacian and scalar curvature are with respect to the evolving metric.
Observe that the equations (1) and (2) are affine in £ so that we may consider these
equations as affine combinations of the special cases where ¢ = ) and ¢ = 1. Note
also that the rates of diffusion in (1) and (2) are different when £ # 1. In the case
where £ = 0, which is the heat equation, Li and Yau [1] proved a differential Harnack
inequality in all dimensions (sharp when R;; = 0). In the case where £ = 1, Hamilton
and the author [2] proved a linear Harnack inequality for the Ricci flow in all dimensions,
extending Hamilton’s trace Harnack inequality [15] for the Ricci flow (which is a special
case of his higher dimensional matrix result). Thus the motivation for considering (1)
and (2) is to affinely interpolate between the Harnack inequalities in [1] and [2].

As in the previous works on differential Harnack inequalities, we consider the loga-
rithm of u, whose evolution is derived from (2) to be
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Define the Harnack quantity, aualogﬂus to Li-Yan [1] and Hamilton [3] by

Q——lnu—wlnul‘e—&hlu—J-ER (4)

We then have the following Harnack Inequality for w.

Theorem 1 Let [Mz,gﬂ} be a closed surface with R(gy) > 0 and ¢ > 0 any non-
negative constant. Let g(t) be a solution to the scaled Ricci flow (1) with g(0) = gy
and u(t) a solution to (2) with w(0) > 0. Then R(t) > 0 and u(t) > 0 as long as the
solution to the scaled Ricei flow exists, and

3 =) -

An immediate consequence is

Corollary 2 1. Taking € = 0, we have the following special case of Li and Yau's
result: if (M2, q) is a closed surface with R > 0, and u is a positive solution to the heat
equation, then inegquality (5) holds.

2. Ife =1 and u(0) = R(gy), then u(t) = R(t) for t > 0, and we obtain Hamilton’s
trace Harnack inequality for the Ricci flow on surfaces: If (M2, g(t)) is a solution to
the Ricci flow on a closed surface with R(0) > 0, then R(t) >0 fort=0 and

%m& |V In R|? +% >0

Proof of Theorem 1 The fact that w(£) > 0 and R(t) = 0 for ¢ > 0 follows from
applying the maximum principle to (2) and (6) below. By using the definition (4), the
equation (3), and the standard formulae

5] 8
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a straightforward computation yields that the evolution of ) is given by




